The effects of exposure of ide’s larvae and juvenile Leuciscus idus (L.) to silver nanoparticles via the digestive tract

MACIEJ CHOJNACKI

Department of Ichthyobiology and Fisheries Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warszawa

JERZY ŚLIWIŃSKI

Department of Ichthyobiology and Fisheries Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warszawa



Abstract

The dynamic development of nanotechnology focused the attention of nanotoxycological literature. Little research was done in the area related to the exposure of fish to nanoparticles in vivo through the digestive tract. This work discusses the issue on the basis of the example of larval and juvenile ide Leuciscus idus (L.). In this experiment the control group was established and fed with commercial feed (group “K”) and a group of fish fed with silver nanoparticles of nominal concentration of 5 mg l-1 and 50 mg l-1 (group “5”, group “50”). The experiment lasted 90 days. Growth, condition and survival of fish were analyzed. The histological image of intestines, liver and gills was examined. The growth of fish on the 30th and 60th days of the experiment showed the positive effect of an addition of Ag nanoparticles to the feed, similarly to the condition of the fish in group 5 on the 90th day of the experiment. The presence of silver nanoparticles in the feed affected the survival of fish. In the intestines, liver and gills of fish exposed to Ag nanoparticles pathological changes were observed.

Keywords:

: nanoparticles of silver, fish, ide, rearing, growth, pathological changes

Ahamed M., Posgai R., Gorey T.J., Nielsen M., Hussain S.M., Rowe J.J., 2009. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol. 242, 263–269.

Bai W., Zhang Z., Tian W., He X., Ma Y., Zhao Y., Chai Z., 2009. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nanopart. Res. 12(5), 1645–1654.

Bar-Ilan O., Albrecht R.M., Fako V.E., Furgeson D.Y., 2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small J. 5 (16), 1897–1910.

Bilberg K., Malte H., Wang T., Baatrup E., 2010. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aqua. Toxicol. 96(2), 159–165.

Blaser S.A., Scheringer M., MacLeod M., Hungerbühler K., 2007. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 390, 396–409.

Chae Y.J., Pham C.H., Lee J., Bae E., Yi J., Gu M.B., 2009. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aqua. Toxicol. 94, 320–327.

Christian P., Von Der Kammer F., Baalousha M., Hofmann Th., 2008. Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology 17, 326–343.

El Badawy A.M., Silva R.G., Morris B., Scheckel K.G., Suidan M.T., Tolaymat T.M., 2010. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 45, 283–287.

Fabrega J., Luoma S.N., Tyler C.R., Galloway T.S., Lead J.R., 2011. Silver nanoparticles: Behaviour and effects in aquatic environment. Environ. Int. 37, 517–531.

Fairbrother A., Fairbrother J.R., 2009. Are environmental regulations keeping up with Innovation. A case study of the nanotechnology industry. Ecotoxicol. Environ. Safety 72, 1327–1330.

Farkas J., Christian P., Tollefsen K.-E., Hylland K., Thomas K.V., 2011. Uptake and effects of manufactured nanoparticles on rainbow trout (Oncorhynchus mykiss) gill cells. Aqua. Toxicol. 101, 117–125.

Farré M., Gajda-Schrantz K., Kantiani L., Barceló D., 2009. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 393(1), 81–95.

Federici G., Shaw B.J., Handy R.D., 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aqua. Toxicol. 84, 415–430.

Gaiser B.K., Fernandes T.F., Jepson M., Lead J.R., Tyler C.R., Stone V., 2009. Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ. Health 8, Suppl. 1, S2.

Griffitt R.J., Hyndman K., Denslow N.D., Barber D.S., 2008. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 107(2), 404–415.

Handy R.D., Henry T.B., Scown T.M., Johnston B.D. Tyler C.R., 2008a. Manufactured nanoparticles: their uptake and effects of fish-a mechanistic analysis. Ecotoxicology 17, 396–409.

Handy R.D., Owen R., Valsami-Jones E., 2008b. The Ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17, 315–325.

Handy R.D., van den Brink N., Chappell M., Mühling M., Behra R., Dušinská M., Simpson P., Ahtiainen J., Jha A.N., Seiter J., Bednar A., Kennedy A., Fernandes T.F., Riediker M., 2012. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21, 933–972.

Hao L., Wang Z., Xing B., 2009. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J. Environ. Sci. 21, 1459–1466.

Hsin Y.-H., Chen C.-F, Huang S., Shih T.-S., Lai P.-S., Chueh P.J., 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179(3) 130–139.

Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schlager J.J., 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. in Vitro 19, 975–983.

Jensen A.T., Selck H., Bjerregaard H.F., Misra S., Berhanu D., 2010. Effects of nano sized CuO and ionic Cu. Toxicity to Daphnia magna and tight epithelial cells. 20th Annual Meeting, Science and Technology for Environmental Protection, Seville, Spain.

Kahru A., Dubourguier H.-C., 2009. From Ecotoxicology to nanoecotoxicology. Toxicology 10, 1016.

Krysanov E.Yu., Pavlov D.S., Demidova T.B., Dgebuadze Yu.Yu., 2010. Effect of nanoparticles on aquatic organisms. Biol. Bull. 37(4), 406–412.

Liu W.-T., 2006. Nanoparticles and their biological and environmental applications. J. Biosci. Bioengin. 102(1) 1–7.

Małaczewska J., 2010. Cytotoksyczność nanocząsteczek srebra. Med. Wet. 66(12), 833–838.

McNeil S.E., 2005. Nanotechnology for the biologist. J. Leuk. Biol.78, 585–594.

Moore M.N., 2006. Do nanoparticles present ecotoxicological risk for health of the aquatic environment. Environ. Int. 32, 967–976.

Ramsden C.S., Smith T.J., Shaw B.J., Handy R.D., 2009. Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18, 939–951.

Renault S., Baudrimont M., Mesmer-Dudons N., Gonzalez P., Mornet S., Brisson A., 2008. Impacts of gold nanoparticles exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and benthic bivalve (Corbicula fluminea). Gold Bull. 41(2), 116–126.

Savolainen K., Alenius H., Norppa H., Pylkkänen L., Tuomi T., Kasper G., 2010. Risk assessment of engineered nanomaterials and nanotechnologies-A review. Toxicology 269, 92–104.

Scown T.M., Santos E.M., Johnston B.D., Gaiser B., Baalousha M., Mitov S., Lead J.R., Stone V., Fernandes T.F., Jepson M., Von Aerle R., Tyler C.R., 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol. Sci. 115(2), 521–534.

Shaw B.J., Handy R.D., 2011. Physiological effects of nanoparticles on Fish: A comparison of nanometals versus metal ions. Enviro. Int. 37 ,1083–1097.

Snopczyński T., Góralczyk K., Czaja K., Struciński P., Hernik A., Korcz W., Ludwicki J.K., 2009. Nanotechnologia – możliwości i zagrożenia. Rocz. PZH 60(2), 101–111.

Wen H.-C., Lin Y.-N., Jian S.-R., Tseng S.-C., Weng M.-X., Liu Y.-P., Lee P.-T., Chen P.-Y., Hsu R.-Q., Wu W.-F., Chou C.-P., 2007. Observation of growth ofhuman fibroblasts on silver nanoparticles. J. Phys., Conference Series 61, 445–449.

Wu Y., Zhou Q., Li H., Liu W., Wang T., Jiang G., 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese Medaka (Oryzias latipes) using the partial–life test. Aqua. Toxicol. 100(2), 160–167.

Yen H.-J., Hsu S.-h, Tsai C.-L., 2009. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small J. 5(13), 1553–1561.

Yeo M.-K., Kang M., 2008. Effect of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull. Korean Chem. Soc. 29(6) 1179–1184.
Download

Published
2014-02-05



MACIEJ CHOJNACKI 
Department of Ichthyobiology and Fisheries Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warszawa
JERZY ŚLIWIŃSKI 
Department of Ichthyobiology and Fisheries Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warszawa



License

From 2022 articles are made available under Creative Commons Attribution 4.0 International licence (CC BY 4.0). Articles published before 2022 are available under Creative Commons Attribution – Non-commercial use – No derivative works  4.0 International licence (CC BY-NC-ND 4.0).

Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.