Skip to main navigation menu Skip to main content Skip to site footer

Vol. 40 No. 1 (2024)

Articles

Amygdalin - analysis of its toxic and anticancer effects

DOI: https://doi.org/10.24326/jasbb.2024.5316
Submitted: December 7, 2023
Published: 2024-06-10

Abstract

Amygdalin, i.e. a cyanide glycoside present naturally in bitter almonds and seeds of many fruits, is a controversial substance, as it has been shown to be toxic but is used as an adjuvant in the treatment of cancer in alternative medicine. Furthermore, studies have shown that amygdalin has antitussive and diastolic effects and exerts a positive effect on the gastrointestinal system. Unhydrolyzed amygdalin has no toxic effect on the organism, but the decomposition products, mainly hydrogen cyanide, are toxic. It has been shown that amygdalin toxicity related to cyanide release requires microbial activity in the intestinal flora. Owing to the synthesis of such enzymes as rhodanase and hydroxocobalamin, herbivorous animals and humans have the ability to detoxify hydrogen cyanide and transform it into compounds with lower toxicity. The antitumor activity of amygdalin is believed to be associated with the cytotoxic activity of enzymatically released hydrogen cyanide and unhydrolyzed cyanogenic glycosides. Given the proven toxicity as well as the inconclusive and uncertain clinical effects, amygdalin cannot currently be recommended as adjunctive therapy to cancer patients. However, many aspects of the application of amygdalin have not been adequately studied to date; hence, further research is necessary to assess its true therapeutic potential.

References

  1. Aamazadeh F., Ostadrahimi A., Rahbar Saadat Y., Barar J., 2020. Bitter apricot ethanolic extract induces apoptosis through increasing expression of Bax/Bcl-2 ratio and caspase-3 in PANC-1 pancreatic cancer cells. Mol. Biol. Rep. 47(3), 1895‒1904. https://doi.org/10.1007/s11033-020-05286-w DOI: https://doi.org/10.1007/s11033-020-05286-w
  2. Adewusi S.R.A., Oke O.L., 1985. On the metabolism of amygdalin. 2. The distribution of β-glucosidase activity and orally administered amygdalin in rats. Can. J. Physiol. Pharmacol. 63(9), 1084–1087. DOI: https://doi.org/10.1139/y85-178
  3. Badr El-Kholy W., Abdel-Rahman S.A., Abd El-Hady El-Safti F.E., Mohey Issa N., 2021. Effect of vitamin B17 on experimentally induced colon cancer in adult male albino rat. Folia Morphol. (Warsz) 80(1), 158–169. DOI: https://doi.org/10.5603/FM.a2020.0021
  4. Dimitrov M., Iliev I., Bardarov K., Georgieva D., Todorova T., 2021. Phytochemical characteriza-tion and biological activity of apricot kernels’ extract in yeast-cell based tests and hepatocellular and colorectal carcinoma cell lines. J. Ethnopharmacol. 279, 114333. https://doi.org/10.1016/j.jep.2021.114333 DOI: https://doi.org/10.1016/j.jep.2021.114333
  5. EFSA [EFSA Panel on Contaminants in the Food Chain], 2016. Scientific opinion on the acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. EFSA J. 14(4), 4424. https://doi.org/10.2903/j.efsa.2016.4424 DOI: https://doi.org/10.2903/j.efsa.2016.4424
  6. El-Desouky M.A., Fahmi A.A., Abdelkader I.Y., Nasraldin K.M., 2020. Anticancer effect of amyg-dalin (Vitamin B-17) on hepatocellular carcinoma cell line (HepG2) in the presence and absence of zinc. Anticancer Agents Med. Chem. 20(4), 486–494. https://doi.org/10.2174/1871520620666200120095525 DOI: https://doi.org/10.2174/1871520620666200120095525
  7. Figurová D, Tokárová K, Greifová H, Knížatová N, Kolesárová A, Lukáč N., 2021. Inflammation, it’s regulation and antiphlogistic effect of the cyanogenic glycoside amygdalin. Molecules 26(19), 5972. https://doi.org/10.3390/molecules26195972 DOI: https://doi.org/10.3390/molecules26195972
  8. Grundy M.M.L., Lapsley K., Ellis PR., 2016. A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. Int. J. Food Sci. Technol. 51, 1937–1946. DOI: https://doi.org/10.1111/ijfs.13192
  9. Iyanu O., Abdelnaser A., 2020. Amygdalin-therapeutic effects and toxicity. J. Biotechnol. Biomed. 3, 39‒49.
  10. Jaswal V., Palanivelu J.C.R., 2018. Effects of the gut microbiota on amygdalin and its use as an anti-cancer therapy: substantial review on the key components involved in altering dose efficacy and toxicity. Biochem. Biophys. Rep. 14, 125–132. https://doi.org/10.1016/j.bbrep.2018.04.008 DOI: https://doi.org/10.1016/j.bbrep.2018.04.008
  11. Jaszczak-Wilke E., Narkowicz S., Namieśnik J., Polkowska Ż., 2017. Amigdalina – lek przeciwno-wotworowy czy trucizna?. Anal. Nauka Prakt. 2, 64–67.
  12. Jaszczak-Wilke E., Polkowska Z., Koprowski M., Owsianik K., Mitchell A.E., Bałczewski P., 2021. Amygdalin: toxicity, anticancer activity and analytical procedures for its determination in plant seeds. Molecules 26, 2253. https://doi.org/10.3390/molecules26082253 DOI: https://doi.org/10.3390/molecules26082253
  13. Kolesar E., Tvrda E., Halenar M., Schneidgenova M., Chrastinova L., Ondruska L., Jurcik R., Ko-vacik A., Kovacikova E., Massanyi P., Kolesarova A., 2018. Assessment of rabbit spermatozoa characteristics after amygdalin and apricot seeds exposure in vivo. Toxicol. Rep. 5, 679–686. https://doi.org/10.1016/j.toxrep.2018.05.015 DOI: https://doi.org/10.1016/j.toxrep.2018.05.015
  14. Kovacikova E., Kovacik A., Halenar M., Tokarova K., Chrastinova L., Ondruska L., Jurcik R., Kolesar E., Valuch J., Kolesarova A., 2019. Potential toxicity of cyanogenic glycoside amygda-lin and bitter apricot seed in rabbits-health status evaluation. J. Anim. Physiol. Anim. Nutr. 103(2), 695–703. https://doi.org/10.1111/jpn.13055 DOI: https://doi.org/10.1111/jpn.13055
  15. Kovacova V., Sarocka A., Blahova J., Sranko P., Omelka R., Galbavy D., Kolesarova A., Martinia-kova M., 2020. Long-term peroral administration of bitter apricot seeds influences cortical bone microstructure of rabbits. J. Anim. Physiol. Anim. Nutr. (Berl) 104(1), 362–370. DOI: https://doi.org/10.1111/jpn.13229
  16. Makarević J., Tsaur I., Juengel E., Borgmann H., Nelson K., Thomas C., Bartsch G., Haferkamp A., Blahet, R.A., 2016. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sci. 147, 137–142. https://doi.org/10.1016/j.lfs.2016.01.039 DOI: https://doi.org/10.1016/j.lfs.2016.01.039
  17. Moradipoodeh B., Jamalan M., Zeinali M., Fereidoonnezhad M., Mohammadzadeh G., 2019. In vitro and in silico anticancer activity of amygdalin on the SK-BR-3 human breast cancer cell line. Mol. Biol. Rep. 46(6), 6361–6370. https://doi.org/10.1007/s11033-019-05080-3 DOI: https://doi.org/10.1007/s11033-019-05080-3
  18. Nowak A., Zielińska A., 2014. Aktywność przeciwnowotworowa amigdaliny. Post. Fitot. 17(4), 82–292.
  19. Siegień I., 2007. Cyjanogeneza u roślin i jej efektywność w ochronie roślin przed atakiem roślino-żerców i patogenów. Kosmos Probl. Nauk Biol. 56(1–2), 274–275.
  20. Song Z., Xu X., 2014. Advanced research on anti-tumor effects of amygdalin. J. Cancer Res. Ther. 10(Suppl. 1), 3–7. DOI: https://doi.org/10.4103/0973-1482.139743
  21. Shi J., Chen Q., Xu M., Xia Q., Zheng T., Teng J., Li M., Fan L., 2019. Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review. Cancer Med. 8(6), 3004–3011. https://doi.org/10.1002/cam4.2197 DOI: https://doi.org/10.1002/cam4.2197
  22. Shim S.M., Kwon H., 2010. Metabolites of amygdalin under simulated human digestive fluids. Int. J. Food Sci. Nutr. 61(8), 770–779. DOI: https://doi.org/10.3109/09637481003796314
  23. Strugala G.J., Rauws A.G., Elbers R., 1986. Intestinal first pass metabolism of amygdalin in the rat in vitro. Biochem. Pharmacol. 35(13), 2123–2128. DOI: https://doi.org/10.1016/0006-2952(86)90580-0
  24. Třísková A., Rudá-Kučerová J., 2019. Can amygdalin provide any benefit in integrative anticancer treatment? Klin. Onkol. 32(5), 360–366. https://doi.org/10.14735/amko2019360 DOI: https://doi.org/10.14735/amko2019360

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.