Abstrakt
Rodzina Asteraceae jest bogatym źródłem wielu laktonów seskwiterpenowych. Te metabolity wtórne odznaczają się wielokierunkowym działaniem, w tym aktywnością przeciwnowotworową, przeciwzapalną czy przeciwdrobnoustrojową. Inżynieria metaboliczna jest obiecującym podejściem, które pozwala na zwiększenie produkcji laktonów seskwiterpenowych poprzez rekonstrukcję szlaku ich biosyntezy w systemach heterologicznych. Ponadto, ich produkcja może zostać zwiększona w gatunkach roślin, w których naturalnie występują, poprzez nadekspresję genów zaangażowanych w szlak ich biosyntezy i/lub czynników transkrypcyjnych pozytywnie regulujących szlak. Każda z tych strategii wymaga szczegółowej wiedzy dotyczącej podłoża genetycznego szlaku biosyntezy laktonów seskwiterpenowych. Niniejsza praca przeglądowa podsumowuje badania molekularne dotyczące biosyntezy tych niezwykle cennych z punktu widzenia farmakologicznego metabolitów wtórnych.
Bibliografia
- Adekenov S.M., 2017. Sesquiterpene lactones with unusual structure. Their biogenesis and biological activity. Fitoterapia 121, 16–30. https://doi.org/10.1016/j.fitote.2017.05.017
- Adekenova G.S., Shaikenova Zh.S., Chervyakova О.V., Zakarya K.D., Аdekenov S.М., 2021. The costunolide biosynthesis enzymes of Artemisia glabella Kar. et Kir.: Determination of the nucleotide sequences of the mRNA. Int. J. Plant Physiol. Biochem. 13(1), 9–18. https://doi.org/10.5897/IJPPB2020.0304
- Agatonovic-Kustrin S., Morton D.W., 2018. The current and potential therapeutic uses of parthenolide. In: Studies in natural products chemistry, 58, 61–91. https://doi.org/10.1016/B978-0-444-64056-7.00003-9
- Babaei G., Aziz S.G.G., Bazl M.R., Ansari M.H.K., 2021. A comprehensive review of anticancer mechanisms of action of alantolactone. Biomed. Pharmacother. 136, 111231. https://doi.org/10.1016/j.biopha.2021.111231
- Bains S., Thakur V., Kaur J., Singh K., Kaur R., 2019. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Genomics 111(6), 1474–1482. https://doi.org/10.1016/j.ygeno.2018.09.022
- Bennett M.H., Mansfield J.W., Lewis M.J., Beale M.H., 2002. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.). Phytochemistry 60(3), 255–261. https://doi.org/10.1016/S0031-9422(02)00103-6
- Bogdanović M., Cankar K., Dragićević M., Bouwmeester H., Beekwilder J., Simonović A., Todorović S., 2020. Silencing of germacrene A synthase genes reduces guaianolide oxalate content in Cichorium intybus L. GM Crops Food, 11(1), 54–66. https://doi.org/10.1080/21645698.2019.1681868
- Bouwmeester H.J., Kodde J., Verstappen F.W., Altug I.G., de Kraker J.W., Wallaart T.E., 2002. Isolation and characterization of two germacrene A synthase cDNA clones from chicory. Plant Physiol. 129(1), 134–144. https://doi.org/10.1104/pp.001024
- Cankar K., van Houwelingen A., Bosch D., Sonke T., Bouwmeester H., Beekwilder J., 2011. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)–valencene. FEBS Letters 585(1), 178–182. https://doi.org/10.1016/j.febslet.2010.11.040
- Chang Y.J., Song S.H., Park S.H., Kim S.U., 2000. Amorpha-4, 11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch. Biochem. Biophys. 383(2), 178–184. https://doi.org/10.1006/abbi.2000.2061
- Chen M., Yan T., Shen Q., Lu X., Pan Q., Huang Y., Tang Y., Fu X., Liu M., Jiang W., Lv Z., Shi P., Ma Y., Hao X., Zhang L., Li L., Tang K., 2017. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol. 214(1), 304–316. https://doi.org/10.1111/nph.14373
- Drogosz J., Janecka A., 2019. Helenalin-a sesquiterpene lactone with multidirectional activity. Curr. Drug Targets 20(4), 444–452. https://doi.org/10.2174/1389450119666181012125230
- Eljounaidi K., Lichman B.R., 2020. Nature’s chemists: the discovery and engineering of phytochemical biosynthesis. Front. Chem. 8, 1041. https://doi.org/10.3389/fchem.2020.596479
- Eljounaidi K., Cankar K., Comino C., Moglia A., Hehn A., Bourgaud F., Bouwmeesterc H., Meninf B., Lanteri S., Beekwilder J., 2014. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Sci. 223, 59–68. https://doi.org/10.1016/j.plantsci.2014.03.007
- Fan W., Fan L., Peng C., Zhang Q., Wang L., Li L., Wang J., Zhang D., Peng W., Wu C., 2019.
- Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: A review. Molecules 24(2), 359. https://doi.org/10.3390/molecules24020359
- Frey M., Klaiber I., Conrad J., Spring O., 2020. CYP71BL9, the missing link in costunolide synthesis of sunflower. Phytochemistry 177, 112430. https://doi.org/10.1016/j.phytochem.2020.112430
- Göpfert J.C., MacNevin G., Ro D.K., Spring O., 2009. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol. 9(1), 1–18. https://doi.org/10.1186/1471-2229-9-86
- Ikezawa N., Göpfert J.C., Nguyen D.T., Kim S.U., O’Maille P.E., Spring O., Ro D.K., 2011. Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J. Biol. Chem. 286(24), 21601–21611. https://doi.org/10.1074/jbc.M110.216804
- Kashkooli A.B., van der Krol A.R., Rabe P., Dickschat J.S., Bouwmeester H., 2019. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metab. Eng. 54, 12–23. https://doi.org/10.1016/j.ymben.2019.01.007
- Kim D.Y., Choi B.Y., 2019. Costunolide—A bioactive sesquiterpene lactone with diverse therapeutic potential. Int. J. Mol. Sci. 20(12), 2926. https://doi.org/10.3390/ijms20122926
- Li H., Li J., Liu M., Xie R., Zang Y., Li J., Aisa H.A., 2021. Guaianolide sesquiterpene lactones from Achillea millefolium L. Phytochemistry, 186, 112733. https://doi.org/10.1016/j.phytochem.2021.112733
- Li Y., Chen F., Li Z., Li C., Zhang Y., 2016a. Identification and functional characterization of sesquiterpene synthases from Xanthium strumarium. Plant Cell Physiol. 57(3), 630–641. https://doi.org/10.1093/pcp/pcw019
- Li Y., Gou J., Chen F., Li C., Zhang Y., 2016b. Comparative transcriptome analysis identifies putative genes involved in the biosynthesis of xanthanolides in Xanthium strumarium L. Front. Plant Sci. 7, 1317. https://doi.org/10.3389/fpls.2016.01317
- Ling C., Zheng L., Yu X., Wang H., Wang C., Wu H., Zhang J., Yao P., Tai Y., Yuan Y., 2020. Cloning and functional analysis of three aphid alarm pheromone genes from German chamomile (Matricaria chamomilla L.). Plant Sci. 294, 110463. https://doi.org/10.1016/j.plantsci.2020.110463
- Liu Q., Kashkooli A.B., Manzano D., Pateraki I., Richard L., Kolkman P., Lucas M.F., Guallar V., de Vos R.C.H., Franssen M.C.R., van der Krol A., Bouwmeester H., 2018. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nat. Commun. 9(1), 1–13. https://doi.org/10.1038/s41467-018-06565-8
- Liu Q., Majdi M., Cankar K., Goedbloed M., Charnikhova T., Verstappen F.W., de Vos R.C.H., Beekwilder J., van der Krol S., Bouwmeester H.J., 2011. Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. PLoS One, 6(8), e23255. https://doi.org/10.1371/journal.pone.0023255
- Liu Q., Manzano D., Tanić N., Pesic M., Bankovic J., Pateraki I., Ricard L., Ferrer A., de vos R., van der Krol S., Bouwmeester H., 2014. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab. Eng. 23, 145–153. https://doi.org/10.1016/j.ymben.2014.03.005
- Lu X., Zhang L., Zhang F., Jiang W., Shen Q., Zhang L., Lv Z., Wang G., Tang K., 2013. AaORA, a trichome-specific AP 2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol. 198(4), 1191–1202. https://doi.org/10.1111/nph.12207
- Ma D. M., Wang Z., Wang L., Alejos-Gonzales F., Sun M.A., Xie D.Y., 2015. A genome-wide scenario of terpene pathways in self-pollinated Artemisia annua. Mol. Plant 8(11), 1580–1598. https://doi.org/10.1016/j.molp.2015.07.004
- Majdi M., Abdollahi M.R., Maroufi A., 2015. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium. Plant Cell Rep. 34(11), 1909–1918. https://doi.org/10.1007/s00299-015-1837-2
- Majdi M., Ashengroph M., Abdollahi M.R., 2016. Sesquiterpene lactone engineering in microbial and plant platforms: parthenolide and artemisinin as case studies. Appl. Microbiol. Biotechnol. 100(3), 1041–1059. https://doi.org/10.1007/s00253-015-7128-6
- Majdi M., Liu Q., Karimzadeh G., Malboobi M.A., Beekwilder J., Cankar K., de Vos R., Todorović S., Simonović A., Bouwmeester H., 2011. Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum parthenium L. Schulz Bip.). Phytochemistry 72(14–15), 1739–1750. https://doi.org/10.1016/j.phytochem.2011.04.021
- Matos M.S., Anastácio J.D., Santos C.N.D., 2021. Sesquiterpene lactones: promising natural compounds to fight inflammation. Pharmaceutics 13(7), 991. https://doi.org/10.3390/pharmaceutics13070991
- Matsushita Y., Kang W., Charlwood B. V., 1996. Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 172(2), 207–209. https://doi.org/10.1016/0378-1119(96)00054-6
- Menin B., Comino C., Portis E., Moglia A., Cankar K., Bouwmeester H.J., Lanteri S., Beekwilder J., 2012. Genetic mapping and characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. Plant Sci. 190, 1–8. https://doi.org/10.1016/j.plantsci.2012.03.006
- Mercke P., Bengtsson M., Bouwmeester H.J., Posthumus M.A., Brodelius P.E., 2000. Molecular cloning, expression, and characterization of amorpha-4, 11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 381(2), 173–180. https://doi.org/10.1006/abbi.2000.1962
- Moujir L., Callies O., Sousa P., Sharopov F., Seca A.M., 2020. Applications of sesquiterpene lactones: A review of some potential success cases. Appl. Sci. 10(9), 3001. https://doi.org/10.3390/app10093001
- Nguyen D.T., Göpfert J.C., Ikezawa N., MacNevin G., Kathiresan M., Conrad J., Spring O., Ro D.K., 2010. Biochemical conservation and evolution of germacrene A oxidase in Asteraceae. J. Biol. Chem. 285(22), 16588–16598. https://doi.org/10.1074/jbc.M110.111757
- Numonov S., Sharopov F., Salimov A., Sukhrobov P., Atolikshoeva S., Safarzoda R., Habasi M., Aisa H.A., 2019. Assessment of artemisinin contents in selected Artemisia species from Tajikistan (central Asia). Medicines 6(1), 23. https://doi.org/10.3390/medicines6010023
- Padilla-Gonzalez G.F., dos Santos F.A., Da Costa F.B., 2016. Sesquiterpene lactones: More than protective plant compounds with high toxicity. Crit. Rev. Plant Sci. 35(1), 18–37. https://doi.org/10.1080/07352689.2016.1145956
- Pazouki L., Memari H.R., Kännaste A., Bichele R., Niinemets Ü., 2015. Germacrene A synthase in yarrow (Achillea millefolium) is an enzyme with mixed substrate specificity: gene cloning, functional characterization and expression analysis. Front. Plant Sci. 6, 111. https://doi.org/10.3389/fpls.2015.00111
- Polichuk D., Teoh K.H., Zhang Y., Ellens K.W., Covello P.S., 2010. Nucleotide sequence encoding an alcohol dehydrogenease from Artemisia annua and uses thereof. Patent No. WO/2010/012074.
- Puglia G.D., Prjibelski A.D., Vitale D., Bushmanova E., Schmid K.J., Raccuia S.A., 2020. Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.). BMC Genomics 21(1), 1–17. https://doi.org/10.1186/s12864-020-6670-5
- Rasool S., Sharma B., 2014. Taraxacum officinale: a high value less known medicinal plant. Ann. Plant Sci. 3(12), 908–915.
- Soetaert S.S., Van Neste C.M., Vandewoestyne M.L., Head S.R., Goossens A., Van Nieuwerburgh F.C., Deforce D.L., 2013. Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biol. 13(1), 1–14. https://doi.org/10.1186/1471-2229-13-220
- Teoh K.H., Polichuk D.R., Reed D.W., Nowak G., Covello P.S., 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Letters 580(5), 1411–1416. https://doi.org/10.1016/j.febslet.2006.01.065
- Teoh K.H., Polichuk D.R., Reed D.W., Covello P.S., 2009. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87(6), 635–642. https://doi.org/10.1139/B09-032
- Testone G., Mele G., di Giacomo E., Tenore G.C., Gonnella M., Nicolodi C., Frugis G., Iannelli M.A., Arnesi G., Schiappa A., Biancari T., Giannino D., 2019. Transcriptome driven characterization of curly-and smooth-leafed endives reveals molecular differences in the sesquiterpenoid pathway. Hortic. Res. 6(1), 1–19. https://doi.org/10.1038/s41438-018-0066-6
- Thakur V., Bains S., Kaur R., Singh K., 2021. Identification and characterization of SlbHLH, SlDof and SlWRKY transcription factors interacting with SlDPD gene involved in costunolide biosynthesis in Saussurea lappa. Int. J. Biol. Macromol. 173, 146–159. https://doi.org/10.1016/j.ijbiomac.2021.01.114
- Thakur V., Bains S., Pathania S., Sharma S., Kaur R., Singh K., 2020. Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant- Saussurea lappa. Int. J. Biol. Macromol. 150, 52–67. https://doi.org/10.1016/j.ijbiomac.2020.01.312
- Wang M., Qiu X., Pan X., Li C., 2021. Transcriptional factor-mediated regulation of active component biosynthesis in medicinal plants. Cur. Pharm. Biotechnol. 22(6), 848–866. https://doi.org/10.2174/1389201021666200622121809
- Wani K.I., Choudhary S., Zehra A., Naeem M., Weathers P., Aftab T., 2021. Enhancing artemisinin content in and delivery from Artemisia annua: a review of alternative, classical, and transgenic approaches. Planta 254(2), 1–15. https://doi.org/10.1007/s00425-021-03676-3
- Wu Z., Li L., Liu H., Yan X., Ma Y., Li Y., Chen T., Wang Ch., Xie L., Hao X., Kayani S.-I., Tang K., 2021. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant Sci. 308, 110920. https://doi.org/10.1016/j.plantsci.2021.110920
- Xu H., Dickschat J.S., 2020. Germacrene A–A central intermediate in sesquiterpene biosynthesis. Chemistry (Weinheim an der Bergstrasse, Germany) 26(72), 17318. https://doi.org/10.1002/chem.202002163
- Zhang Y., Teoh K.H., Reed D.W., Maes L., Goossens A., Olson D.J., Ross A.R, Covello P.S., 2008. The molecular cloning of artemisinic aldehyde Δ11 (13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. Journal of Biological Chemistry 283(31), 21501-21508. https://doi.org/10.1074/jbc.M803090200
- Zhou Z., Tan H., Li Q., Li Q., Wang Y., Bu Q., Li Y., Wu Y., Chen W., Zhang L., 2020. TRICHOME AND ARTEMISININ REGULATOR 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. New Phytol. 228(3), 932–945. https://doi.org/10.1111/nph.16777
Downloads
Download data is not yet available.