Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 71 No. 3 (2016)

Articles

The influence of habitat conditions and long-term land lying follow on genetic variability of Galium aparine L.

DOI: https://doi.org/10.24326/as.2016.3.8
Submitted: May 8, 2019
Published: 2016-11-03

Abstract

The land lying fallow and modifications to the use of agricultural lands cause changes in biodiversity. The slow process of secondary succession causes an increase of their genetic variability. The aim of the presented work was to estimate the level of genetic variation among Galium aparine genotypes from two different fallow lands. The assessment of genetic diversity was based on the ISSR markers. The genetic distance matrix was calculated based on the Dice’a formula. The value of similarity index ranged from 0.755 to 1.00. The research showed that the analysed genotypes were characterised by quite a low level of genetic variability. The common grouping of genotypes collected from two habitats can attest to the fact that the type of habitat, soil and long-term land lying fallow can influence Galium aparine variability.

References

  1. Bishoyi A.K., Sharma A., Kavane A., Geetha K.A., 2016. Varietal discrimination and genetic variability analysis of Cymbopogon using RAPD and ISSR markers analysis. Appl. Biochem. Biotechnol. 179 (4), 659–70.
  2. Domaradzki K., 2006. Minimum efective doses for Galium aparine control in the spring cereals. Prog. Plant Prot. 46 (2), 267–272.
  3. Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaftissue. Phytochem. Bull. 19, 11–15.
  4. Ernst V., 2003. Zur Diversität von Galium aparine L.-Herkünften. Doctoral Diss. Hohenheim University, Stuttgart.
  5. Hammami R., Jouve N., Soler C., Frieiro E., González J.M., 2014. Genetic diversity of SSR and ISSR markers in wild populations of Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). Plant System. Evol. 300 (9), 2029–2040.
  6. Hammer Ø., Harper D.A.T., Ryan P.D., 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electronica 4 (1), 1–9.
  7. Hübner R., Fykse H., Hurle K., Klemsdal S.S., 2003. Morphological differences, molecular characterization, and herbicide sensitivity of catchweed bedstraw (Galium aparine) populations. Weed Sci. 51 (2), 214–225.
  8. Jabłoński W., Widera M., 1996. Ekologiczno-ekonomiczne aspekty kształtowania fotocenoz na obszarach odłogowanych. Acta Agrobot. 49, 3–11.
  9. Khalik K.A., El-Twab M.A., Galal R., 2014. Genetic diversity and relationships among Egyptian Galium (Rubiaceae) and related species using ISSR and RAPD markers. Biologia, Sec. Botany 69 (3), 300–310.
  10. Ko W.R., Sa K.J., Roy N.S., Choi H.-J., Lee J.K., 2016. Analysis of the genetic diversity of super
  11. sweet corn inbred lines using SSR and SSAP markers. Genet. Mol. Res.15 (1), 1–13.
  12. Kraska P., Okoń S., Pałys E., 2009. Weed infestation of a winter wheat canopy under the conditions of application of different herbicide doses and foliar fertilization. Acta Agrobot. 62,193–206.
  13. Mabberley D.J., 1987. The plant-book. Cambridge University Press, Cambridge.
  14. Malicki L., Kurus J., Pałys E., Podstawka-Chmielewska E., 2002. Fitocenoza odłogu na glebie lekkiej i ciężkiej jako element krajobrazu rolniczego. Fragm. Agron. 19, 1 (73), 32–40.
  15. Marks M., Nowicki J., Szwejkowski Z., 2000. Odłogi i ugory w Polsce. Cz. I. Przyczyny odłogowania i zjawiska towarzyszące. Fragm. Agron. 1, 5–19.
  16. Mosaferi S., Sheidai M., Keshavarzi M., Noormohammadi Z., 2015, Genetic diversity and morphological variability in Polygonum aviculare s.l. (Polygonaceae) of Iran. Phytotaxa 233 (2), 166–178.
  17. Nei M., Li W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci., 76, 5269–5273.
  18. Okoń S., Surmacz-Magdziak A., Paczos-Grzęda E., 2013. Genetic diversity among cultivated and wild Chamomile germplast based on ISSR analysis. Acta Sci. Pol., Hortorum Cultus 12 (2), 43–50.
  19. Podstawka-Chmielewska E., Kurus J., 2007. Wpływ wieloletniego odłogowania pola ornego na właściwości chemiczne gleby. Zesz. Probl. Post. Nauk Rol. 520, 845–850.
  20. Podstawka-Chmielewska E., Pałys E., Kurus J., 2007. Sukcesja roślinności w czasie 10-letniego odłogowania gruntów poornych na glebie lekkiej. Acta Bot. Warm. Mas. 4, 23–34.
  21. Pranagal J., Podstawka-Chmielewska E., 2012. Physical properties of a Rendzic Phaeozem during a ten-year period of fallowing under the conditions of south-eastern Poland. Geoderma 189–190, 262–267.
  22. Rola J., 1991. Ekologiczno-ekonomiczne podstawy chemicznej walki z chwastami na polach uprawnych. Mat. 31 Sesji Nauk. IOR 1, 110–124.
  23. Santos E., Matos M., Silva P., Figueiras A.M., Benito C., Pinto-Carnide O., 2016. Molecular diversity and genetic relationships in Secale. J. Genet. 95, 273–2812.
  24. Vidyakin A.I., Boronnikova S.V., Nechayeva Yu.S., Pryshnivskaya Ya.V., Boboshina I.V., 2015. Genetic variation, population structure, and differentiation in scots pine (Pinus sylvestris L.) from the Northeast of the Russian plain as inferred from the molecular genetic analysis data. Russ. J. Genet. 51, 1213–1220.
  25. van der Weide R.Y., 1993. Population dynamics and population control of Galium aparine L. 15–18.
  26. Willis J.C., 1985. A dictionary of the flowering plants and ferns. Cambridge University Press, Cambridge, 1294 pp.
  27. Zietkiewicz E., Rafalski A., Labuda D., 1994. Genome fingerprinting by simple-sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.