Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Skip to main navigation menu Skip to main content Skip to site footer

Vol. 79 No. 4 (2024)

Articles

A Impact of sowing date and nitrogen fertilization on two cultivars of Tritordeum yield potential – a Polish pilot study

DOI: https://doi.org/10.24326/as.2024.5433
Submitted: September 13, 2024
Published: 18.03.2025

Abstract

Agricultural production diversity is becoming a key to solve challenges of modern agriculture - including those related to climate change. The main cereals cultivated in Europe are wheat, rye and barley. One of the new cereals introduced recently into producte is Tritordeum -  a hybrid of durum wheat and a wild form of barley. It is adapted for cultivation conditions of warm and dry climate of Mediterranean. However, recent shifts in climate make it an interesting alternative also for temperate climates.It is also a response to increasing consumer demands for food of good nutritional value. A pilot study (pot experiment) on Tritordeum yield potential un-der 3 increasing nitrogen fertilization rates (N1, N2 and N3) have been established in 2020 in eastern Poland. Tritordeum v. Bulel and Tritordeum v. Aucan performance have been compared with Triticum durum and Triticum aestivum performance for two sowing dates – autumn and spring. The results demonstrated that the yield level of Tritordeum v. Bulel was comparable to durum wheat yields. Yields of Triticum aestivum were higher (only by 8% for autumn sowing and approximately 43% for spring sowing). Moreover, Tritordeum v. Bulel had lower yield level than Tritordeum v. Aucan (by approximately 1-8%). All tested species showed good performance un-der medium (N2) or even low (N1) nitrogen fertilization rate. The other traits tested (number of ears, productive tillering, thousand grains weight) placed Tritordeum (in particular Tritordeum v. Bulel) closer to Triticum durum than to Triticum aestivum. Triticum aestivum had higher results in terms of particularly tillering rate and number of spikes per pot than other 3 tested species. Tritordeum has shown that it can be a promising species for cultivation under Polish conditions as its yielding potential can reach yielding potential of Triticum durum. Further field studies on performance of this crop are needed.

References

  1. Abrouk M., Stritt C., Müller T., Keller B., Roulin A., Krattinger S.G., 2018. High-throughput geno-typing of the spelt gene pool reveals patterns of agricultural history in Europe. bioRxiv, 481424. https://doi.org/10.1101/481424
  2. Akbar A., Ahmed A., Ahmed Z., Liaqat S., 2021. Physicochemical, rheological, and sensory evalua-tion of selected pa-kistani wheat varieties. J. Food Process. Preserv. 46(1), e16174. https://doi.org/10.1111/jfpp.16174
  3. Alvarez J.M., Martínez E., Diezma B., 2021. Application of hyperspectral imaging in the assessment of drought and salt stress in magneto-primed triticale seeds. Plants 10(5), 835. https://doi.org/10.3390/plants10050835
  4. Ayadi S., Karmous C., Chamekh Z., Hammami Z., Baraket M., Esposito S., Rezgui S., Trifa Y., 2015. Effects of nitrogen rates on grain yield and nitrogen agronomic efficiency of durum wheat genotypes under different environments. Ann. Appl. Biol. 168(2), 264–273. https://doi.org/10.1111/aab.12262
  5. Bar‐Yosef O., 2011. Climatic fluctuations and early farming in west and east asia. Curr. Anthropol. 52(S4), S175–S193. https://doi.org/10.1086/659784
  6. Ceglar A., Toreti A., Zampieri M., Royo C., 2021. Global loss of climatically suitable areas for durum wheat growth in the future. Environ. Res. Lett. 16, 104049, https://doi.org/10.1088/1748-9326/ac2d68
  7. FAO, 2022. World Food and Agriculture – Statistical Yearbook 2022. Rome. https://doi.org/10.4060/cc2211en
  8. FAOSTAT, 2024. FAOSTAT data portal, https://www.fao.org/faostat/en/#data/QCL [access: 17.04.2024].
  9. Folina A., Kakabouki I., Kontonasaki E., Karydogianni S., Voskopoulos D., Beslemes D.F., Bilalis D., 2020. Effect of organic and inorganic fertilization on yield and quality traits of tritordeum, ‘Bulel’ variety under dry conditions in Greece. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Hortic. 77(2). https://doi.org/10.15835/buasvmcn-hort:2020.0056
  10. Galieni A., Stagnari F., Visioli, G. Marmiroli N., Speca S., Angelozzi G., D’Egidio S., Pisante M., 2016. Nitrogen fertilization of durum wheat: a case study in mediterranean area during transi-tion to conservation agriculture. Ital. J. Agron. 11(1), 12–23. https://doi.org/10.4081/ija.2016.662
  11. Gallardo M., Fereres E., 1993. Growth, grain yield and water use efficiency of tritordeum in relation to wheat. Eur. J. Agron. 2(2), 83–91. https://doi.org/10.1016/S1161-0301(14)80137-8
  12. Gashaw A., 2021. Review on structure, functional and nutritional composition of barley (Hordeum vulgare). J. Nutr. Food Process. 4(2). https://doi.org/10.31579/2637-8914/046
  13. GUS, 2023. Główny Urząd Statystyczny. Rocznik statystyczny rolnictwa 2023 [Statistical Yearbook of Agriculture 2023]. Warszawa, Poland.
  14. Góral H., Kosmala A., Walczak M., 2020. Evaluation of tritordeum's adaptability and grain quality in diverse environments. J. Agron. Crop Sci. 206(5), 623–634. https://doi.org/10.1111/jac.12400
  15. Hagenblad J., Oliveira H.R., Forsberg N., Leino M.W., 2016. Geographical distribution of genetic diversity in secale landrace and wild accessions. BMC Plant Biol. 16(1). https://doi.org/10.1186/s12870-016-0710-y
  16. Harasim E., 2018. Studia nad plonowaniem, jakością ziarna i opłacalnością produkcji ozimej formy pszenicy zwyczajnej i twardej. Monografie i rozprawy naukowe IUNG-PIB, 60.
  17. Haro C., Guzmán-López M. H., Marín-Sanz M., Sánchez-León S., Vaquero L., Pastor J., Comino I., Sousa C., Vivas S., Landa B.B., Barro F., 2022. Consumption of tritordeum bread reduces immunogenic gluten intake without altering the gut microbiota. Foods 11(10), 1439. https://doi.org/10.3390/foods11101439
  18. Hunt H.V., Campana M.G., Lawes M.C., Park Y., Bower M.A., Howe C.J., Jones M.K., 2011. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across eur-asia. Mol. Ecol. 20(22), 4756–4771. https://doi.org/10.1111/j.1365-294x.2011.05318.x
  19. Jansone Z., Bleidere M., Dinaburga G., 2022. Application of ground-based high-throughput pheno-typing platforms in cereal breeding – a review. Research for Rural Development 2022: Annual 28th International Scientific Conference Proceedings. https://doi.org/10.22616/rrd.28.2022.003
  20. Kakabouki I., Beslemes D.F., Tigka E.L., Folina A., Karydogianni S., Zisi C., Papastylianou P., 2020. Performance of six genotypes of tritordeum compare to bread wheat under east mediter-ranean condition. Sustainability 12(22), 9700. https://doi.org/10.3390/su12229700
  21. Kaltsikes P.J., Gustafson J.P., Lukaszewski A.J., 1984. Chromosome engineering in triticale. Can. J. Genet. Cytol. 26(2), 105–110. https://doi.org/10.1139/g84-018
  22. Kheto A., Joseph D., Islam M., Dhua S., Das R., Kumar Y., Vashishth R., Sharanagat V.S., Kumar K.,Nema P.K., 2022. Microwave roasting induced structural, morphological, antioxidant, and functional attributes of quinoa (Chenopodium quinoa Willd). J. Food Process. Preserv. 46(5). https://doi.org/10.1111/jfpp.16595
  23. Landolfi V., Blandino M., 2023. 2.07 – Minor cereals and new crops: Tritordeum. In: P. Ferranti (red.), Sustainable Food Science – A Comprehensive Approach, Elsevier, pp. 83–103. https://doi.org/10.1016/b978-0-12-823960-5.00023-8
  24. Lempiäinen-Avci M., Lundström M., Huttunen S., Leino M.W., Hagenblad J., 2018. Archaeological and historical materials as a means to explore Finnish crop history. Environ. Archaeo. 25(1), 37–52. https://doi.org/10.1080/14614103.2018.1482598
  25. Ma X.F., Gustafson J.P., 2006. Timing and rate of genome variation in triticale following allopoly-ploidization. Genome 49(8), 950–958. https://doi.org/10.1139/g06-078
  26. Makowska A., Obuchowski W., Sulewska H., Koziara W., Paschke H., 2008. Effect of nitrogen fertilization of durum wheat varieties on same characteristics important for pasta production. Acta Sci. Pol. Technol. Aliment. 7(1), 29–39.
  27. Martin A., Sanchez-Mongelaguna E., 1981. Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Euphytica 31, 261–267.
  28. Martinek P.L., Ohnoutková T., Vyhnánek J. Bednář J., 2003. Characteristics of wheat-barley hy-brids (× Tritordeum Ascherson et Graebner) under Central-European climatic conditions. Biul. Inst. Hod. Aklim. Rośl. 226/227, 87–95.
  29. McGoverin C.M., Fox G., Manley M., 2011. Application of near-infrared spectroscopy to the eval-uation of cereals. J. Cereal Sci. 54(3), 300–311. https://doi.org/10.1016/j.jcs.2011.06.001
  30. Montesano V., Negro D., De Lisi A., Urbano M., Sarli G., Laghetti G., 2021. Agronomic perfor-mance and phenolic profile of Tritordeum (× Tritordeum martinii A. Pujadas) lines. Cereal Chem. 98(2), 382–391. https://doi.org/10.1002/cche.10378
  31. Nitride C., D’Auria G., Dente A., Landolfi V., Picariello G., Mamone G., Blandino M., Romano R., Ferranti P., 2022. Tritordeum as an innova-tive alternative to wheat: A comparative digestion study on bread. Molecules 27(4), 1308. https://doi.org/10.3390/molecules27041308
  32. Papadopoulos A.G., Mavroeidis A., Stavropoulos P., Anastasopoulos V., Beslemes D.F., Tigka E., Kakabouki I., 2023. Tritordeum: a versatile and resilient cereal for Mediterranean agriculture and sustainable food production. Cereal Res. Commun. 52, 323–331. https://doi.org/10.1007/s42976-023-00401-6
  33. Rachoń L., Bobryk-Mamczarz A., Kiełtyka-Dadasiewicz A., Woźniak A., Stojek Z., Zajdel-Stępień A., 2022. Plonowanie i jakość wybranych gatunków i odmian pszenicy makaronowej. Cz. I. Plonowanie [Yielding and quality of selected speciesand cultivarsof pasta wheat. Part I. Yield-ing]. Agron. Sci. 77(1), 53–63. https://doi.org/10.24326/as.2022.1.5
  34. Slowik E., 2018. Nowe zboże tritordeum – mieszaniec pszenicy i jęczmienia [New cereal tritordeum - a hybrid of wheat and barley]. Prz. Zboż.-Młyn. 62(5), 20–23.
  35. Różewicz M., Wyzińska M., 2021. Characteristic of Tritordeum and evaluation of its potential for cultivation in Poland, with considerations for the nutritional and fodder value the grains. Pol. J. Agron. 44, 15–21. https://doi.org/10.26114/pja.iung.431.2021.44.03
  36. Suchowilska E., Radawiec W., Wiwart M., 2021. Tritordeum – the content of basic nutrients in grain and the morphological and anatomical features of kernels. Int. Agrophys. 35(4), 343–355. https://doi.org/10.31545/intagr/144592
  37. Tedone L., Verdini L., Grassano N., Tarraf W., Mastro G.D., 2014. Optimising nitrogen in order to improve the efficiency, eco-physiology, yield and quality on one cultivar of durum wheat. Ital. J. Agron. 9(2), 49. https://doi.org/10.4081/ija.2014.536
  38. Vaquero L., Comino I., Vivas S., Rodríguez‐Martín L., Giménez M. J., Pastor J., Sousa C., Barro F., 2018. Tritordeum: A novel cereal for food processing with good acceptability and signifi-cant reduction in gluten immunogenic peptides in comparison with wheat. J. Sci. Food Agric. 98(6), 2201–2209. https://doi.org/10.1002/jsfa.8705
  39. Visioli G., Lauro M., Vamerali T., Dal Cortivo C., Panozzo A., Folloni S., Piazza C., Ranieri R., 2020. A comparative study of organic and conventional management on the rhizosphere micro-biome, growth and grain quality traits of Tritordeum. Agronomy 10(11), 1717. https://doi.org/10.3390/AGRONOMY10111717
  40. Wang J., Luo M., Chen Z., You F. M., Wei Y., Zheng Y., Dvořák J., 2013. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D‐genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 198(3), 925–937. https://doi.org/10.1111/nph.12164
  41. Yang D., Cai T., Luo Y., Wang Z., 2019. Optimizing plant density and nitrogen application to ma-nipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat. Peer J 7, e6484. https://doi.org/10.7717/peerj.6484
  42. Zhang M., Mao W., Zhang G., Wu F., 2014. Development and characterization of polymorphic est-ssr and genomic ssr markers for tibetan annual wild barley. PLoS ONE 9(4), e94881. https://doi.org/10.1371/journal.pone.0094881

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.