Skip to main navigation menu Skip to main content Skip to site footer

Vol. 18 No. 5 (2019)

Articles

ELLAGIC ACID CONTENT IN SELECTED WILD SPECIES OF FRUIT ROSES

DOI: https://doi.org/10.24326/asphc.2019.5.13
Submitted: October 29, 2019
Published: 2019-10-29

Abstract

Ellagic acid (EA) is a natural antioxidant, belonging to the group of polyphenolic compounds. It displays a broad spectrum of pro-health effects, ranging from the prevention of cancer to antiviral properties. It is present in many fruit from the rose family (Rosaceae): strawberries, raspberries, blackberries and walnuts as well as cranberries and grapes. The available literature states that the fruit of roses, in addition to their aesthetic and functional applications, also show therapeutic properties, which, among other things, are associated with a high content of polyphenols, including ellagic acid derivatives. The aim of this research was to determine the differences in the content of free ellagic acid in the fruit of selected rose species. The test material consisted of freeze-dried sublimation and ground fruit from the following species of roses: R. canina, R. moyesii, R. pendulina. The fruit was separated into two fractions: flesh and seeds. Quantitative analysis of free ellagic acid was carried out by spectrofluorimetry. The free EA was present both in the flesh and in the seeds of the studied species of roses. Its content in the mentioned fractions varied depending on the species. The flesh of R. pendulina was characterised by the highest level of EA in free form (247.72 μg·g–1 of dry weight). The seeds of R. moyesii proved to be the most abundant in free EA (105.69 μg·g–1 of dry weight.

References

  1. Aaby, K., Skrede, G., Wrolstad, R.E. (2005). Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragaria ananassa). J. Agric. Food Chem., 53(10), 4032–4040.
  2. Adamczak, A., Buchwald, W., Zieliński, J., Mielcarek, S. (2010). The effect of air and freeze drying on the content of flavonoids, β-carotene and organic acids in European dog rose hips (Rosa L. sect. Caninae DC. em. Christ.). Herba Pol., 56(1),7–18.
  3. Adamczak, A., Grys, A., Buchwald, W., Zieliński, J. (2011). Content of oil and main fatty acids in hips of rose species native in Poland. Dendrobiology, 66, 55–62.
  4. Adamczak, A, Buchwald, W, Zieliński, J., Mielcarek, S. (2012). Flavonoid and organic acid content in rose hips (Rosa L., section Caninae DC. em. Christ.). Acta Biol. Cracov., 54(1), 1–8.
  5. Adams, L.S., Chen, S., Heber, D., Seeram, N.P., Zhang, Y. (2010). Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells in vitro. Cancer Prev. Res., 3(1), 108–113.
  6. Aguilera-Carbo, A.F., Augur, C., Prado-Barragan, L.A., Aguilar, C.N., Favela-Torres, E. (2008). Extraction and analysis of ellagic acid from novel complex sources. Chem. Pap., 62(4), 440–444.
  7. Bagavan, A., Elango, G., Jayaseelan, C., Kamaraj, C., Kaushik, N.K., Kirthi, A.V., Marimuthu, S., Mohanakrishnan, D., Rahuman, A.A., Rajakumar, G., Sahal, D., Santhoshkumar, T., Zahir, A.A., Velayutham, K. (2012). Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. J. Ethnopharmacol., 141, 796–802.
  8. Ball, S. (2000). Naturalne substancje przeciwnowotworowe. Wyd. Medyk., Warszawa.
  9. Baraniak, J., Kania, M. (2015). Bilberry, grape and pomegranate – well known plants with antioxidant activity. Post. Fitoter., 1, 50–55.
  10. Baranowska, A., Radwańska, K., Zarzecka, K., Gugała, M., Mystkowska, I. (2015). Health benefts of red raspberry fruit (Rubus idaeus L.). Probl. Hig. Epidemiol., 96(2), 406–409.
  11. Barros, L., Carvalho, A.M., Morais, J., Ferreira, I. (2010). Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem., 120, 247–254.
  12. Beliveau, R., Bojanowski, M.W., Cass, B., Chapus, A., Durocher, Y., Gingras, D., Labrecque, L., Lamy, S., Mihoubi, S. (2005). Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis, 26(4), 821–826.
  13. Bratu, M.M., Doroftei, E., Negreanu-Pirjol, T., Hostina, C., Porta, S. (2012). Determination of antioxidant activity and toxicity of Sambucus nigra fruit extract using alternative methods. Food Technol. Biotechnol., 50(2), 177–182.
  14. Birt, D. F., Hendrich, S., Wang, W. (2001). Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol. Ther., 90, 157–177.
  15. Buchwald, W., Zieliński, J., Mścisz, A., Adamczak, A., Mrozikiewicz, P.M. (2007). Current research on roses and their perspectives Herba Pol., 53(1), 85–92.
  16. Cendrowski, A., Kalisz, S., Mitek, M. (2012). Properties and application of rose hips in food processing. Żywn. Nauka Technol. Jakość, 4(83), 24–31.
  17. Chapus, A., Labrecque, L., Lamy, S., Chapus, A., Mihoubi, S., Cass, B., Bojanowski, M.W., Gingras, D., Béliveau, R. (2005). Combined inhibition of PDGF and VEGFreceptors by ellagic acid, phenolic compound. Carcinogenesis, 26(4), 821–826.
  18. Chen, Di, Ping Dou, Q. (2008). Tea Polyphenols and their roles in cancer prevention and chemotherapy. Int.
  19. J. Mol. Sci., 9, 1196–1206.
  20. Conclin, C.M.J., Bechberger, J.F., MacFabe, D., Guthrie, N., Kurowska, E.M., Naus, C.C. (2007). Genistein and quercetin increase connexin43 and suppress growth of breast cancer cells. Carcinogenesis, 28 (1), 93–100.
  21. Deng, S., West, B.J., Jensen, C.J. (2013). UPLC-TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. J. Anal. Met. Chem., article ID 710972. DOI 10.1155/2013/710972
  22. Doroszko, M., Janda, K., Jakubczyk, K. (2018). Healthy properties of selected national fruits. Kosmos Probl. Nauk Biol., 67(2), 415–423.
  23. Ercisli, S., Orhan, E., Esitken, A. (2007). Fatty acid composition of Rosa species achenes in Turkey. Chem. Nat. Compd., 43(5), 605–606.
  24. Fecka, I. (2009). Qualitative and quantitative determination of hydrolysable tannins and other polyphenols in herbal products from meadowsweet and dog rose. Phytochem. Anal., 20, 177–190.
  25. Gaber, M.W., Kim, S., Richardson, M., Yang, Y., Zawaski, J.A., Zhang, F., Zhang, X.A. (2009). The inhibition of glioma growth in vitro and in vivo by a chitosan/ellagic acid composite biomaterial. Biomaterials, 30, 4743–4751.
  26. Gao, H., Peng, B., Xiong, Y., Zhang, J., Zhou, Z. (2011). Density functional study on the bioactivity of ellagic acid, its derivatives and metabolite. Comput. Theoret. Chem., 963(1), 148–153.
  27. Gasik, A., Mitek, M., Kalisz, S. (2008). Impact of the maceration process and storage conditionson the antioxidant capacity and content of some selected components in the cornelian cherry juice. Żywn. Nauka Technol. Jakość, 5(60), 161–167.
  28. Gherib, E. (2011). Polyphenols compounds in fruits and vegetables. Med. Rodz., 4, 110–115.
  29. Gunduz, K., Saracoglu, O., Özgen, M., Serce, S. (2013). Antioxidant, physical and chemical characteristics of cornelian cherry fruits (Cornus mas L.) at different stages of ripeness. Acta Sci. Pol. Hortorum Cultus, 12(4), 59–66.
  30. Häkkinen, S.H., Kärenlampi, S.O., Mykkänen, H.M., Heinonen, I.M., Törrönen, A.R. (2000). Ellagic acid content in berries: Influence of domestic processing and storage. Eu. Food Res. Technol., 212(1), 7580.
  31. Henker, H. (2000). Rosa L. In: Gustav Hegi. Illustrierte Flora von Mitteleuropa, Weber, H.E. (ed.). Parey Buchverlag, Berlin, Band 4,2 C, 1–108.
  32. Huerga-González, V., Lage-Yusty, M.A., Lago-Crespo, M., López-Hernández, J., 2015. Comparison of methods for the study of ellagic acid in pomegranate juice beverages. Food Anal. Methods, 8, 2286–2293. https://doi.org/10.1007/s12161-014-9997-1
  33. Jiménez, S., Jiménez-Moreno, N., Luquin, A., Laguna, M., Rodríguez-Yoldi, M.J., Ancín-Azpilicueta, C. (2017). Chemical composition of rosehips from different Rosa species: An alternative source of antioxidants for food industry. Food Add. Contam. Part A, 34, 1121–1130.
  34. Kobus, M., Pogorzelski, E. (2008). Fruits of rose hip – the properties and the ways of utilisation. Przem. Ferm. Owoc. Warz., 5, 19–21.
  35. Kołodziej, B., Drożdżal, K. (2011). Antioxidant properties of black elder flowers and berries harvested from the wild. Żywn. Nauka Technol. Jakość, 4(77), 36–44.
  36. Komańska, E., Żesławska, E. (2012). Jak zastąpić jedną grupę hydroksylowa inną grupą w cząsteczce kwasu elagowego. In: Badania w dydaktyce chemii (Research didactics of chemistry), Cieśla, P., Nodzyńska, M., Stawowska, I. (eds). Pedagical University of Kraków, Department of Chemistry and Chemistry Education, Kraków, 83–86.
  37. Komańska, E., Żesławska, E. (2013). Wpływ kwasu elagowego na organizmy żywe [w:] Wpływ wybranych związków chemocznych na organizmy żywe, red. Cieśla P., Michniewska A.UP, Instytut Biologii, Zakład Chemii i Dydaktyki Chemii, 32–36.
  38. Kostić, D.A., Velicković, J.M., Mitić, S.S., Mitić, M.N., Randelović, S.S. (2012). Phenolic content, and antioxidant and antimicrobial activities of Crataegus oxyacantha L. (Rosaceae) fruit extract from Southeast Serbia. Trop. J. Pharm. Res., 11(1), 117–124.
  39. Kozłowski, J., Buchwald, W., Forycka, A., Szczyglewska, D. (2009). Rośliny i surowce lecznicze. Podstawowe wiadomości z zakresu zielarstwa. Wyd IWNiRZ, Poznań.
  40. Krauze-Baranowska, M., Majdan, M., Kula, M. (2014). Owoce maliny właściwej i maliny zachodniej źródłem substancji biologicznie aktywnych. Post Fitoter., 1, 32–39.
  41. Król, D., Adamczak, A., Buchwald, W. (2012). Determination of chemical composition of essential oils isolated from hips of native rose species in Poland. Borgis – Post. Fitoter., 4, 216–219.
  42. Kucharska, A.Z. (2012). Active compounds of cornelian cherry fruit (Cornus mas L.). Monografie UP we Wrocławiu 148, Wrocław.
  43. Kwiatkowska, E. (2010). Ellaagic acid – content in food and role in nutrition. Borgis, 4, 211–214.
  44. Laskowska, J., Pogorzelski, E. (2007). Domestic fruits – valuable raw material for wineries. Przem. Ferm. Owoc. Warz., 12, 12–13.
  45. Lee, J. (2004). Hydrolytic and antioxidant properties of ellagic acid and its precursors present in muscadine grape. Doctor’s dissertation, University of Florida 19.
  46. Leja, M., Mareczek, A., Nanaszko, B. (2007). Antioxidant properties of fruits of certain wild tree and bush species. Rocz. AR Pozn. Ogrodnictwo, 41, 327–331.
  47. Mármol, I., Sánchez-De-Diego, C., Jiménez-Moreno, N., Ancín-Azpilicueta, C., Rodríguez-Yoldi, M. (2017). Therapeutic applications of rose hips from different Rosa species. Int. J. Mol. Sci., 18, 1–37.
  48. Marosz, A. (2016). Róże na owoce. Truskawka, malina, jagody. Plantpress, 3. https://www.ogrodinfo.pl/rosliny-jagodowe/roze-na-owoce
  49. Milala, J., Sójka, M., Król, K., Buczek, M. (2013). Profile of chemical composition of Rosa pomifera ‘Karpatia’ fruits. Żywn. Nauka Technol. Jakość, 5(90), 154–167.
  50. Mohan Rao, L.J., Shivanandappa, T., Srivastava, A. (2007). Isolation of ellagic acid from the aqueous extract of the roots of Decalepis hamiltonii: antioxidant activity and cytoprotective effect. Food Chem., 103(1), 224–233.
  51. Meyer, S.E. (2008). Rosa L. In: Woody plant seed manual. Agriculture handbook 727. USDA, 974–980.
  52. Monder, M. (2017). Selected problems and directions of modern rose breeding. Wiad. Bot., 61. https://doi.org/10.5586/wb.2017.002
  53. Montazeri, N., Baheri, E., Mirzajani, F., Barami, Z., Yousefian, S. (2011). Phytochemical contents and biological activities of Rosa canina fruit from Iran. J. Med. Plants Res., 5(18), 4584–4589.
  54. Nowak, R. (2005). Fatty acid composition. Acta Soc. Bot. Pol., 74(3), 229–235.
  55. Nowak, R. (2006). Determination of ellagic acid in pseudofruits of some species of roses. Acta Pol. Pharm. Drug Res., 63(4), 289–292.
  56. Nowak, R. (2006a). Phytochemical studies of selected species of the genus Rosa L. Biological analysis of active ingredients. Post-doctoral dissertation. Akad. Med. Lublin.
  57. Nowak, R., Gawlik-Dziki, U. (2007). Polyphenols of Rosa L. leaves extracts and their radical scavenging activity. Verlag der Zeitschrift für Naturforschung, Tübingen, 62c, 32–38.
  58. Nowak, R. (2011). Skąd i dokąd zmierzamy – stan badań fitochemicznych róż w kontekście ich aktywności biologicznej. Róże owocowe w uprawie, przetwórstwie, żywieniu i ochronie zdrowia. Mat. I Konf. Nauk., SGGW, Warszawa, 15–16.
  59. Nowak, R., Olech, M., Pecio, Ł., Oleszek, W., Los, R., Malm, A., Rzymowska, J. (2014). Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric., 94(3), 560–567.
  60. Nurzyńska-Wierdak, R. (2016). Healing properties and the use of some species of woody plants in phytotherapy. Shrubs in the northern hemisphere. Ann. UMCS. sec. EEE Horticultura, 26(2), 27–46.
  61. Ochir, S., Park, B., Nishizawa, M., Kanazawa,T., Funaki, M., Yamagishi, T. (2010). Simultaneous determination of hydrolysable tannins in the petals of Rosa rugosa and allied plants. J. Nat. Med., 64, 383–387.
  62. Őzcan, M. (2002). Nutrient composition of rose (Rosa canina L.) seed and oils. J. Med. Food, 82 (2), 195–201.
  63. Őzkan, G., Sagdiç, O., Baydar, N., Baydar, N. (2004). Antioxidant and antibacterial activities of Rosa damascena flower extracts. Food Sci. Tech. Int., 10, 277–281.
  64. Parus, A. (2013). Antioxidant and pharmacological properties of phenolic acids. Post. Fitoter., 1, 48–53.
  65. Popek, R. (2002). Róże dziko rosnące Polski. Klucz-Atlas. Plantpress, Kraków.
  66. Popek, R. (2007). Dziko rosnące róże Europy. Officina Botanica, Kraków.
  67. Rutkowska, J., Adamska, A., Pielat, M., Białek, M. (2012). Comparison of composition and properties of Rosa rugosa fruits preserved using conventional and freeze-drying methods. Żywn. Nauka Technol. Jakość, 4(83), 32–43.
  68. Sádecká, J., Tóthová, J. (2012). Spectrofluorimetric determination of ellagic acid in brandy. Food Chem. 135, 893–897. https://doi.org/10.1016/j.foodchem.2012.06.019
  69. Soh, P.N., Witkowski, B., Olagnier, D., Nicolau, M.L., Garcia-Alvarez, M.C., Berry, A., Benoit-Vical, F. (2009). In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob. Agents Chemother., 53(3), 1100–1106. |DOI: 10.1128/AAC.01175-08
  70. Soong, Y.Y., Barlow, P.J. (2006). Quantification of gallic acid and ellagic acid from longan seed and mango kernel and their effects on antioxidant activity. Food Chem., 97, 524–30.
  71. Sroka, Z., Cisowski, W. (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 41, 753–758.
  72. Stoilova, I., Wilker, M., Stoyanova, A., Krastanov, A., Stanchev, V. (2007). Antioxidant activity of extract from elder flower (Sambucus nigra L.). Herba Pol., 53, 45–54.
  73. Tahirović, A., Bašić, N. (2014). Phenolic content and antioxidant activity of Crataegus monogyna L. fruit extracts. Works Fac. For. Univ. Sarajevo, 2, 29–40.
  74. Taylor, S.L. (2005). Advances in food and nutrition research. Vol. 49. Elsevier Academic Press, New York, 14–20.
  75. Teleszko M., Wojdyło A., Oszmiański J. (2012). Content of ellagic acid and polymerized proanthocyanidins in pseudo fruits of selected rose species. Żywn. Nauka Technol. Jakość, 5(84), 37–46.
  76. Wang, W., Zhou, Q., Liu, L., Zou, K. (2012). Anti-allergic activity of emodin on IgE-mediated activation in
  77. RBL-2H3 cells. Pharmacol. Rep., 64, 1216–1222.
  78. Williner, M.R., Pirovani, M.E., Güemes, D.R. (2003). Ellagic acid content in strawberry of different cultivars and ripening stages. J. Sci. Food Agric., 83, 842–845.
  79. Wissemann, V., Gallenmüller, F., Ritz, C., Steinbrecher, T., Speck, T. (2006) Inheritance of growth form and mechanical characters in reciprocal polyploid hybrids of rosa section caninae – implications for the ecological niche differentiation and radiation process of hybrid offspring. Trees, 20, 340–347.
  80. Wojdyło, A., Oszmiański, J., Bielicki, P. (2010). Chemical composition, phenolic compounds and antioxidant activity of three varieties of apple from organic and conventional farming. J. Res. Applic. Agric. Eng., 55(4), 173–177.
  81. Zalega, J., Szostak-Węgierek, D. (2013). Nutrition in cancer prevention. Part I. Plant polyphenols, carotenoids, dietary fiber Probl. Hig. Epidemiol., 94(1), 41–49.
  82. Zawirska-Olszańska, A., Kucharska, A.Z., Sokół-Łętowska, A., Biesiada, A. (2010). Quality assessment of pumpkin jams enriched with japanese quince, cornelian cherry and strawberries. Żywn. Nauka. Technol. Jakość, 1(68), 40–48.
  83. Zawiślak, A., Michalczyk, M. (2015). Antioxidant properties of low-processed wrinkled rose (Rosa rugosa) petals. Żywn. Nauka Technol. Jakość, 1 (98), 155–169.
  84. Zieliński, J. (1987). Rodzaj Rosa L. In: Flora polski. Rośliny naczyniowe, Jasiewicz, A. (ed.). PWN, Warszawa-Kraków, 49.
  85. Zieliński, J., Popek, R. (2001). Rosa L. In: Atlas rozmieszczenia roślin naczyniowych w Polsce, Zając, A., Zając, M. (ed.). Instytut Botaniki Uniwersytetu Jagiellońskiego, Kraków, 454–457.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 79 80 81 82 83 84 85 86 87 88 > >> 

You may also start an advanced similarity search for this article.