Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 6 (2021)

Articles

Effect of condit soil improver on growth, yield and leaf mineral content of two summer pear cvs. with interstocks

DOI: https://doi.org/10.24326/asphc.2021.6.9
Submitted: October 1, 2020
Published: 2021-12-09

Abstract

The study involving 2 pear cultivars was conducted in 2006–2016. ‘Radana’ and ‘Clapp’s Favourite’ were planted in the spring 2006 in the Experimental Station next to Wrocław (south-western Poland) on Quince S1 and Caucasian pear seedlings with 2 interstocks – ‘Doyenne du Comice’ and ‘Pyrodwarf’. An annual dose of 3 tonnes per hectare of Condit Basic bio-fertilizer was applied onto the tree row soil surface at the beginning of March 2012, i.e., starting from the 7th year after the planting. The study objective was to evaluate effect of Condit preparation on summer pear tree cultivars which are not compatible with Quince, and to assess interstock suitability in their context. The yields obtained in the first eleven years following tree planting were the most abundant for ‘Radana’ on Caucasian pear and on Quince with ‘Doyenne du Comice’ interstock. When applied for 5 years, Condit increased the leaf surface area, however a significant difference was exhibited only by ‘Radana’ on the Caucasian pear. This soil improver did not affect tree growth and yielding; total chlorophyll content; foliar Mg, P, Ca, and K; and mean fruit mass across the investigated treatment combinations.

References

  1. Abbey, T., Rathier, T. (2005). Effects of mycorrhizal fungi, biostimulants and water absorbing polymers on the growth and survival of four landscape plant species. J. Environ. Hortic., 23(2), 108–111.
  2. Askari-Khorasgani, O., Jafarpour, M., Hadad, M.M., Pessarakli, M. (2019). Fruit yield and quality characteristics of “Shahmiveh” pear cultivar grafted on six rootstocks. J. Plant Nutr., 42(4), 323–332. https://doi.org/10.1080/01904167.2018.1555592
  3. Bulgari, R., Franzoni, G., Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9, 306, 1–30. https://doi.org/10.3390/agronomy9060306
  4. Calvo, P., Nelson, L., Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8
  5. Derkowska, E., Sas Paszt, L., Głuszek, S., Trzciński, P., Przybył, M., Frąc, M. (2017). Effects of treatment of apple trees with various bioproducts on tree growth and occurrence of mycorrhizal fungi in the roots. Acta Sci. Pol., Hortorum Cultus, 16(3), 75–83. https://doi.org/10.24326/asphc.2017.3.8
  6. Dinu, T.A., Alecu, I.N., Tudor, V., Stefan, M., Micu, M.M. (2015). Biostimulators impact analysis on the quality and quantity of agricultural products. J. Biotech. Abstracts 208(6), 359. https://doi.org/10.1016/j.jbiotec.2015.06.359
  7. Grzyb, Z.S., Piotrowski, W., Sas Paszt L. (2015). The residual effects of various bioproducts and soil conditioners applied in the organic nursery on apple tree performance in the period of two years after transplanting. J. Res. Applic. Agric. Eng., 60(3), 109–113.
  8. Haak, E., Tiirmaa, K., Univer, N. (2013). The performance of pear rootstocks in the north European climatic conditions. Acta Hortic., 981, 401–404. https://doi.org/10.17660/ActaHortic.2013.981.63
  9. Hecl, J. (2010). Effect of selected amendments on cadmium content in the soil and its transfer into crops. Agriculture, 56(2), 52–58.
  10. Hecl, J., Šoltysová, B., Danilovič, M. (2012). Influence of the organic fertilizer Condit on the content of heavy metals and soil chemical properties. Agric. Conspec. Sci., 77(3), 119–126.
  11. Iglesias, I., Asin, L., Montserrat, R., Vilardell, P., Carbo, J., Bonany, J. (2003). Performance of some pear rootstocks in Lleida and Girona (Catalonia NE-Spain). ITEA Producción Vegetal, 99(1), 147–156.
  12. Ikinci, A., Bolat, I., Ercisli, S., Kodad, O. (2014). Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biol. Res., 47(1), 1–8. https://doi.org/10.1186/0717-6287-47-71
  13. Ikinci, A., Bolat, I., Ercisli, S., Esitki, A. (2016). Response of yield, growth and iron deficiency chlorosis of ‘Santa Maria’ pear trees on four rootstocks. Not. Bot. Hort. Agrobot., 44(2), 563–567. https://doi.org/10.15835/nbha44210501
  14. Jacob, H.B. (2002). New pear rootstocks from Geisenheim, Germany. Acta Hortic., 596, 337–344. https://doi.org/10.17660/ActaHortic.2002.596.52
  15. Kumar, C.J., Uday, S., Shashi, S. (2012). Effect of rootstock and interstock on plant vigour of pear. Inter. J. Farm Sci., 2(1), 29–35.
  16. Kviklys, D., Kviklienė, N. (2005). Vegetative and seedling rootstock effect on pear fruit internal and external quality. Sodininkystė Daržininkystė, 24(2), 11–19.
  17. Lepsis, J., Drudze, I. (2011). Evaluation of seven pear rootstocks in Latvia. Acta Hortic., 903, 457–461. https://doi.org/10.17660/ActaHortic.2011.903.62
  18. Lewko, J., Ścibisz, K., Sadowski, A. (2004). Mineral element content in the leaves of rootstocks used for pears and of maiden trees budded on them. Acta Sci. Pol., Hortorum Cultus, 3(2), 147–152.
  19. Mass, F. (2006). Evaluation of Pyrus and Quince rootstocks for high density pear orchards. Sodininkystė Daržininkystė, 25(3), 13–26.
  20. Massai, R., Loreti, F., Fei, C. (2008). Growth and yield of ‘Conference’ pears grafted on quince and pear rootstocks. Acta Hortic., 800, 617–624. https://doi.org/10.17660/ActaHortic.2008.800.82
  21. Mečiar, L. (2011). Influence of selected agrotechnical elements on the yield forming of winter wheat and triticale. Agrochémia (Nitra), 15(4), 15–18.
  22. Mészáros, M., Laňar, L., Kosina, J., Náměstek, J. (2019). Aspects influencing the rootstock-scion performance during long term evaluation in pear orchard. Hort. Sci. (Prague), 46(1), 1–8. https://doi.org/10.17221/55/2017-HORTSCI
  23. Milošević, T., Milošević, N. (2016). Estimation of nutrient status in pear using leaf mineral composition and deviation from optimum percentage index. Acta Sci. Pol., Hortorum Cultus, 15(5), 45–55.
  24. Mosa, W.F.A.E.G., Sas Paszt, L., Frąc, M., Trzciński, P., Przybył, M., Treder, W., Klamkowski, K. (2018). Effect of some bioproducts on the growth, yield and fruit quality of apple trees. Hort. Sci. (Prague), 45(3), 111–118. https://doi.org/10.17221/75/2017-HORTSCI
  25. Musacchi, S., Ancarani, V., Grandi, M., Sansavini, S. (2002). Comparative field performance of cvs. Sensation Red Bartlett and Cascade grafted to six quince and pear clonal seedling rootstocks. Acta Hortic., 596, 385–388. https://doi.org/10.17660/ActaHortic.2002.596.60
  26. North, M.S., Cook, N.C. (2008). Effect of six rootstocks on ‘Forelle’ pear tree growth, production, fruit quality and leaf mineral content. Acta Hortic., 772, 97–103. https://doi.org/10.17660/ActaHortic.2008.772.11
  27. North, M., de Kock, K., Booyse, M. (2015). Effect of rootstock on ‘Forelle’ pear (Pyrus communis) growth and production. South African J. Plant Soil, 32(2), 65–70. https://doi.org/10.1080/02571862.2014.981881
  28. Ozturk, A., Ozturk, B. (2014). The rootstock influences growth and development of ‘Deveci’ pear. Turk. J. Agric. Nat. Sci., 1(special issue), 1049–1053.
  29. Pylak, M., Oszust, K., Frąc, M. (2019). Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Bio/Tech., 18, 597–616. https://doi.org/10.1007/s11157-019-09500-5
  30. Rozpara, E., Pąśko, M., Bielicki, P., Sas Paszt, L., Głowacka, A. (2015). The influence of some bio-products on the growth, yielding and fruit quality of ‘Debreceni Bötermö’ sour cherry trees cultivated in an organic orchard. J. Res. Applic. Agric. Eng., 60(4), 76–79.
  31. SADEF – experimentation department (2011). CONDIT – efficiency trial on strawberry crop. Tribotechnologies, 1–14.
  32. Sosna, I., Czaplicka-Pędzich, M. (2013). Wzrost i owocowanie drzew sześciu odmian gruszy w zależności od zastosowanej podkładki [Growth and fruiting of trees on six pear cultivars depending on applied rootstock]. Episteme, 19(3), 441–451.
  33. Sosna, I., Kortylewska, D. (2013). Estimation of interstock and intermediate stock usefulness for summer pear cvs. budded on two rootstocks. J. Hort. Res., 21(1), 79–82. https://doi.org/10.2478/johr-2013-0011
  34. Sotiropoulos, T.E. (2006). Performance of the pear (Pyrus communis) cultivar William’s Bon Chretien grafted on seven rootstocks. Austral. J. Exp. Agric., 46(5), 701–705. https://doi.org/10.1071/EA04132
  35. Staneva, I., Kornov, G., Akova, V. (2019). Effect of some bioproducts on chlorophyll content and main nutrients in peach leaves. Hortic. Sci. Pap., ser. B, 63(1), 41–46.
  36. Stern, R.A., Doron, I. (2009). Performance of ‘Coscia’ pear (Pyrus communis) on nine rootstocks in the north of Israel. Sci. Hortic., 119(3), 252–256. https://doi.org/10.1016/j.scienta.2008.08.002
  37. Świerczyński, S., Stachowiak, A., Świerczyńska, I., Golcz-Polaszewska, M. (2014). Influence of rootstock, cultivar and Ergoplant biostimulant on the growth of maiden pear trees in nursery and physiological compatibility. Acta Sci. Pol., Hortorum Cultus, 13(6), 3–14.
  38. Tobiašová, E. (2011). Vplyv organických hnojív na vlastnosti pody pod repou cukrovou [Influence of organic fertilizers on soil properties under sugar beet]. Listy Cukrov. Řepař., 127(11), 352–355.
  39. Zubair, M., Banday, F.A., Waida, U.I., Baba, J.A., Hussain, S.S., Rehman, M.U. (2017). Effect of bio-stimulants on improving floral characteristics, yield and quality of apple cv. Red Delicious. Brit. J. Appl. Sci. Technol., 21(2), 1–9. BJAST.33634

Downloads

Download data is not yet available.

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.