Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 6 (2023)

Articles

Effects of zinc-nano oxide, salicylic acid and sodium nitroprusside on physiological properties, antioxidant enzyme activities and secondary metabolites of Viola odorata under drought stress

DOI: https://doi.org/10.24326/asphc.2023.4778
Submitted: May 8, 2022
Published: 2023-12-22

Abstract

One of the most important abiotic stresses and limiting factors (closing pores, lack of CO2 entry, reduced photosynthesis, and reduced yield) of plant products around the world is water-deficit stress. This study aimed to examine the water deficit stress and foliar application with anti-stress compounds (ASC) on characteristics of Viola odorata. The study was carried out as a factorial experiment based on a randomized complete design. The factors consisted of water deficit and the foliar application of ASC at six levels [zinc-nano oxide (ZnO, 1000 and 1500 mg l–1), salicylic acid (SA, 200 and 300 mg l–1), and sodium nitroprusside (SNP, 200 and 300 μM)], and the control. The water deficit reduced the leaf water potential, cell membrane stability, and the shoot and root fresh weight but increased electrolyte leakage and soluble sugar accumulation. However, foliar applications, particularly SA and SNP, positively affected the measured parameters. The activities of superoxide dismutase and guaiacol peroxidase at all three field capacity levels were higher in the plants treated with SA and SNP than in the control and plants treated with ZnO. In sum, using 200 mg l–1 of SA as a foliar application, in addition to improvement of the growth and developmental conditions of the aromatic violet plant, moderated the adverse effects of water deficit stress and increased the plant resistance to water deficit stress. Based on the results, the application of SA, SNP, and ZnO reduced electrolyte leakage and enhanced the plant’s resistance to water deficit by increasing the compatible osmolyte accumulation and antioxidant enzyme activity.

References

  1. Abedi, T., Pakniyat, H. (2010). Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J. Genet. Plant Breed. 46, 27–34. https://doi.org/10.17221/67/2009-CJGPB DOI: https://doi.org/10.17221/67/2009-CJGPB
  2. Acosta-Motos, J.R., Ortuno, M.F., Bernal-Vicente, A., Diaz-Vivancos, P. Sanchez-Blanco, M.J., Hernandez, J.A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy 7, 1–18. https://doi.org/10.3390/agronomy7010018 DOI: https://doi.org/10.3390/agronomy7010018
  3. Albergaria, E.T., Oliveira, A.F.M., Albuquerque, U.P. (2020). The effect of water deficit stress on the composition of phenolic compounds in medicinal plants. South Afr. J. Bot. 131, 12–17.‏ https://doi.org/10.1016/j.sajb.2020.02.002 DOI: https://doi.org/10.1016/j.sajb.2020.02.002
  4. Alscher, R.G., Erturk, N., Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 53, 1331–1341. https://doi.org/10.1093/jexbot/53.372.1331 DOI: https://doi.org/10.1093/jexbot/53.372.1331
  5. Aliabadi Farahani, H., Valadabadi, S.A., Daneshian, J., Khalvati, M.A. (2009). Evaluation changing of essential oil of balm (Melissa officinalis L.) under water deficit stress conditions. J. Med. Plants Res. 3, 329–333. https://doi.org/10.5897/JMPR.9000606
  6. Ashraf, M., Foolad, M.R. (2007). Role of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59, 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006 DOI: https://doi.org/10.1016/j.envexpbot.2005.12.006
  7. Blum, A., Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci., 21, 43–47. https://doi.org/10.2135/cropsci1981.0011183X002100010013x DOI: https://doi.org/10.2135/cropsci1981.0011183X002100010013x
  8. Chavoushi, M., Najafi, F., Salimi, A., Angaji, S.A. (2019). Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Ind. Crops Prod. 134, 168–176.‏ https://doi.org/10.1016/j.indcrop. 2019.03.071 DOI: https://doi.org/10.1016/j.indcrop.2019.03.071
  9. Coleman, J.E. (1992). Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61, 897–946. DOI: https://doi.org/10.1146/annurev.bi.61.070192.004341
  10. Damalas, C.A. (2019). Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci. Hortic., 246, 360–365.‏ https://doi.org/10.1016/j.scienta.2018.11.005 DOI: https://doi.org/10.1016/j.scienta.2018.11.005
  11. Dazy, M., Jung, V., Ferard, J.F., Masfaraud, J.F. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere, 74, 57–63. https://doi.org/10.1016/j.chemosphere. 2008.09.014 DOI: https://doi.org/10.1016/j.chemosphere.2008.09.014
  12. del Río L.A., Corpas, F.J., López-Huertas, E., Palma, J.M. (2018). Plant superoxide dismutases: function under abiotic stress conditions. In: D.K., Gupta, J.M., Palma F.J. Corpas, Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, 1–26. https://doi.org/10.1007/978-3-319-75088-0_1 DOI: https://doi.org/10.1007/978-3-319-75088-0_1
  13. Dien, D.C., Mochizuki, T., Yamakawa, T. (2019). Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci., 22(4), 530–545. DOI: https://doi.org/10.1080/1343943X.2019.1647787
  14. El Fouly, M.M., Mobarak, Z.M., Salama, Z.A. (2011). Micronutrients (Fe, Mn and Zn) foliar spray for increasing salinity tolerance in wheat (Triticum aestivum L). Afr. J. Plant Sci. 5, 314–322. https://doi.org/10.5897/AJPS.9000165
  15. El Sayed, A.I., El-Hamahmy, M.A.M., Rafudeen, M.S., Mohamed, A.H., Omar, A.A. (2019). The impact of drought stress on antioxidant responses and accumulation of flavonolignans in milk thistle (Silybum marianum (L.) Gaertn). Plants (Basel), 8(12), 611. https://doi.org/10.3390/plants8120611 DOI: https://doi.org/10.3390/plants8120611
  16. El-Tohamy, W.A., Khalid, A.Kh., El-Abagy, H.M., Abou-Hussein, S.D. (2009). Essential oil, growth and yield of onion (Allium cepa L.) in response to foliar application of some micronutrients. Austral. J. Basic Appl. Sci., 3(1), 201–205.
  17. Farooq, M., Basra, S.M.A., Wahid, A., Rehman, H. (2009). Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice. J. Agron. Crop Sci., 195, 254–261. https://doi.org/10.1111/j.1439-037X.2009.00367 DOI: https://doi.org/10.1111/j.1439-037X.2009.00367.x
  18. Fotouhi Ghazvini, R., Heidari, M. Hashempour. A. (2011). Physiology and molecular biology of stress tolerance in plants. Jahad Daneshgahi of Mashhad, 360 pp.
  19. Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016 DOI: https://doi.org/10.1016/j.plaphy.2010.08.016
  20. Gorgini Shabankareh, H., Fakheri, B. (2015). The effect of different levels of salinity and drought stresses on growth indices and the essential oil of lemon balm (Melissa officinalis L.). Iran. J. Field Crop Sci., 46(4), 686–673. https://doi.10.22059/IJFCS.2015.56815 [In Farsi]
  21. Gorgini Shabankareh, H., Khorasaninejad, S. (2017). Effects of sodium nitroprusside on physiological and biochemical characteristics of savory (Satureja khuzestanica) under deficit water regimes. J. Plant Prod. (J. Agric. Sci. Nat. Res.), 24, 55–70.
  22. Hajiboland, R., Amirazad, F. (2010). Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. Plant Soil Environ., 5, 209–217. DOI: https://doi.org/10.17221/207/2009-PSE
  23. Ibrahim, E.A. (2016). Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol., 192, 38–46. https://doi.org/10.1016/j.jplph.2015.12.011 DOI: https://doi.org/10.1016/j.jplph.2015.12.011
  24. Kazemi, H., Mortazavian, S.M.M., Ghorbani Javid, M. (2017). Physiological responses of cumin (Cuminum cyminum) to water deficit stress. Iran. J. Field Crop Sci., 48(4), 1099–1113.
  25. Lutts, S., Kint, J.M., Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oriza sativa L.) cultivars differing in salinity resistance. Ann. Bot., 78, 389–398. https://doi.org/10.1006/anbo.1996.0134 DOI: https://doi.org/10.1006/anbo.1996.0134
  26. Maurino, V.G., Flügge, U.-I. (2008). Experimental systems to assess the effects of reactive oxygen species in plant tissues. Plant Signal. Behav., 3, 923–928. https://doi.org/10.4161/psb.7036 DOI: https://doi.org/10.4161/psb.7036
  27. Maurya, R., Kumar, A. (2014). Effect of micronutrients on growth and corm yield of gladiolus. Plant Arch., 14, 529–533.
  28. van Meeteren, U., Kaiser, E., Matamoros, P.M., Verdonk, J.C., Aliniaeifard, S. (2020). Is nitric oxide a critical key factor in ABA-induced stomatal closure? J. Exp. Bot. 71(1), 399–410. https://doi.org/10.1093/jxb/erz437 DOI: https://doi.org/10.1093/jxb/erz437
  29. Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol., 132, 272–281. https://doi.org/10.1104/pp.102.018457 DOI: https://doi.org/10.1104/pp.102.018457
  30. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9 DOI: https://doi.org/10.1016/S1360-1385(02)02312-9
  31. Mohasseli, V., Sadeghi, S. (2018). Exogenously applied sodium nitroprusside improves physiological attributes and essential oil yield of two drought susceptible and resistant specie of Thymus under reduced irrigation. Ind. Crops Prod., 130, 130–136. https://doi.org/10.1016/j.indcrop.2018.12.058 DOI: https://doi.org/10.1016/j.indcrop.2018.12.058
  32. Nahrjoo, M., Sedaghathoor, S. (2018). The induction of salinity stress resistance in rosemary as influenced by salicylic acid and jasmonic acid. Commun. Soil Sci. Plant Anal. 49(14), 1761–1773. https://doi.org/10.1080/00103624.2018.1474913 DOI: https://doi.org/10.1080/00103624.2018.1474913
  33. Nie, Z., Wang, J., Rengel, Z., Liu, H., Gao, W., Zhao, P. (2018). Effects of nitrogen combined with zinc application on glutamate, glutamine, aspartate and asparagine accumulation in two winter wheat cultivars. Plant Physiol. Biochem., 127, 485–495. https://doi.org/10.1016/j.plaphy.2018.04.022 DOI: https://doi.org/10.1016/j.plaphy.2018.04.022
  34. Okunlola, A., Ngubanei, M., Cousins, B., du Toit, A, (2016). Challenging the stereotypes: Small-scale black farmers and private sector support programmes in South Africa. Institute for Poverty, Land and Agrarian Studies, University of the Western Cape.78PP.
  35. Pallag, A., Jurca, T., Pasca, B., Sirbu, V., Honiges, A., Costuleanu, M. (2016). Analysis of phenolic compounds composition by HPLC and assessment of antioxidant capacity in Equisetum arvense L., extracts. Rev. Chim. (Bucharest). 67, 1623–1627.
  36. Phimchan, P., Chanthai, S., Bosland, P., Techawongstien, S. (2014). Enzymatic changes in phenylalanine ammonia-iyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in Capsicum under drought stress. J. Agric. Food Chem., 62(29). https://doi.org/10.1021/jf4051717 DOI: https://doi.org/10.1021/jf4051717
  37. Pirzad, A., Darvishzadeh, R., Hassani, A., 2015. Effect of super adsorbent application in different irrigation regimes on photosynthetic pigments and its relationship with grain yield and essential oil of cumin (Cuminum cyminum L.). J. Hortic. Sci., 29(3), 377–387.
  38. Rebey, B.I., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., Marzouk, B. (2012). Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind. Crops Prod., 34, 238–245. https://doi.org/10.1016/j.indcrop.2011.09.013 DOI: https://doi.org/10.1016/j.indcrop.2011.09.013
  39. Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J.A., Hilal, M., Prado, F.E. (2009). Soluble sugars – metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal. Behav., 4(5), 388–393. https://doi.org/10.4161/psb.4.5.8294 DOI: https://doi.org/10.4161/psb.4.5.8294
  40. Ruiz-Lau, N., Medina-Lara, F., Minero-García, Y., Zamudio-Moreno, E., Guzmán-Antonio, A., Echevarría-Machado, I., Martínez-Estévez, M. (2011). Water deficit affects the accumulation of capsaicinoids in fruits of Capsicum chinense Jacq. HortScience, 46(3), 487–492. https://doi.org/10.21273/HORTSCI.46.3.487 DOI: https://doi.org/10.21273/HORTSCI.46.3.487
  41. Sabzmeydani, E., Sedaghathoor, S., Hashemabadi, D. (2020). Salinity response of Kentucky bluegrass (Poa pratensis L.) as influenced by salicylic acid and progesterone. Rev. Chapingo Ser. Hortic., 26(1), 49–63. https://doi.org/10.5154/r.rchsh.2019.08.012 DOI: https://doi.org/10.5154/r.rchsh.2019.08.012
  42. Sadeghian, F., Hadian, J., Hadavi, M., Mohamadi, A., Ghorbanpour, M., Ghafarzadegan, R. (2013). Effects of exogenous salicylic acid application on growth, metabolic activities and essential oil composition of Satureja khuzistanica Jamzad. J. Med. Plant, 12(47), 1–13.
  43. Sanchez, F.J., Manzanares, M., de Andres, E.F., Tenorio, J.L., Ayerbe, L. (1998). Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res., 59, 225–235. https://doi.org/10.1016/S0378-4290(98)00125-7 DOI: https://doi.org/10.1016/S0378-4290(98)00125-7
  44. Shackel, K.A., Ahmadi, H.H., Biasi, W., Buchner, R., Goldhamer, D.A., Gurusinghe, S.H., Hasey, J., Kester, D., Krueger, B., Lampinen, B., McGourty, G., Micke, W., Mitcham, E., Olson, B., Pelletrau, K., Philips, H., Ramos D., Schwankl, L.J., Sibbett, S., Snyder, R., Southwick, S., Stevenson, M., Thorpe, M., Weinbaum, S., Yeager, J. (1997). Plant water status as an index of irrigation need in deciduous fruit trees. Hort. Technol., 7, 23–29. https://doi.org/10.21273/HORTTECH.7.1.23 DOI: https://doi.org/10.21273/HORTTECH.7.1.23
  45. Tavakoli Saberi, M.R., Sedaghat, M.R. (2005). Medicinal plants, 6th ed. Roozbehan Publications.
  46. Tsui, C. (1948). The role of zinc in auxin synthesis in the tomato plant. Am. J. Bot., 35, 172–179. DOI: https://doi.org/10.1002/j.1537-2197.1948.tb05203.x
  47. Vallee, B.L., Falchuk, K.H. (1993). The biochemical basis of zinc physiology. Physiol. Rev., 73, 79–118. DOI: https://doi.org/10.1152/physrev.1993.73.1.79
  48. Xiong, J., Zhang, L., Fu, G., Yang, Y., Zhu, C., Tao, L. (2012). Drought induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J. Plant Res., 125, 155–164. https://doi.org/10.1007/s10265-011-0417-y DOI: https://doi.org/10.1007/s10265-011-0417-y
  49. Yadollahi, P., Javaheri, M.A., Asgharipour, M.R. (2017). Effect of ascorbic acid and sodium nitroprusside foliar spraying on yield and qualitative characteristics of summer squash (Cucurbita pepo) at different levels of drought stress. J. Plant Ecophysiol., 10, 88–101. [In Persian with English abstract]
  50. Yusuf, M., Hasan, S.A., Ali, B., Hayat, S., Fariduddin, Q., Ahmad, A. (2008). Effect of salicylic acid on salinity‐induced changes in Brassica juncea. J. Integr. Plant Biol., 50(9), 1096–1102. https://doi.org/10.1111/j.1744-7909.2008.00697.x DOI: https://doi.org/10.1111/j.1744-7909.2008.00697.x
  51. Zangani, E., Zehtab-Salmasi, S., Alibi, B., Zamani, A.A. (2018). Protective effects of nitric oxide on photosynthetic stability and performance of Silybum marianum under water deficit conditions. Agron. J., 110, 555–564.‏ https://doi.org/10.2134/agronj2017.07.0396 DOI: https://doi.org/10.2134/agronj2017.07.0396

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.