Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 1 (2022)

Articles

Health status of carrots Daucus carota L. ssp. sativus grown in integrated and organic farming systems

DOI: https://doi.org/10.24326/asphc.2022.1.3
Submitted: November 28, 2020
Published: 2022-02-28

Abstract

Carrot culrivars ‘Bolero’, ‘Fayette F1’, ‘Flakke, Koral’, ‘Nantes’, ‘Perfekcja’ and ‘Sukces’ were grown in integrated and organic farming systems. The severity of Alternaria leaf blight and root diseases was evaluated at harvest and after five months of storage. Fungi were isolated from carrot roots. Disease severity was affected by the years of the study, farming system and cultivar. The severity of Alternaria leaf blight was lower in the integrated farming system than in the organic system. Carrots of cvs. ‘Bolero’ and ‘Fayette F1’ were healthiest. In both production systems, the symptoms of mixed rot (soft rot, Pectobacterium carotovorum subsp. carotovorum and Sclerotinia rot, Sclerotinia sclerotiorum), dry rot (Fusarium spp.), common scab (Streptomyces scabies), crater rot (Rhizoctonia carotae) and black rot (Alternaria radicina, A. dauci) were encountered sporadically, and their severity was low on carrot roots analyzed at harvest. Disease symptoms became more severe during storage, and they were more frequently observed on carrot roots in the organic farming system. Cultivars exerted varied effects on the severity of the analyzed root diseases. The fungal pathogens isolated from carrot roots confirmed the presence of disease symptoms. 

References

  1. Abdelrazek, S., Simon, P., Colley, M., Mengiste, T., Hoagland, L. (2020). Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE, 15(6), e0233783. https://doi.org/10.1371/journal.pone.0233783 DOI: https://doi.org/10.1371/journal.pone.0233783
  2. Andrade, C.M., Tinoco, M.L.P., Rieth, A.F., Maia, F.C.O., Aragao, F.J.L. (2016). Host induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathol., 65(4), 626–632. https://doi.org/10.1111/ppa.12447 DOI: https://doi.org/10.1111/ppa.12447
  3. Bitsadze, N., Siebold, M., Koopmann, B., von Tiedemann, A. (2015). Single and combined colonization of Sclerotinia sclerotiorum sclerotia by the fungal mycoparasites Coniothyrium minitans and Microsphaeropsis ochracea. Plant Pathol., 64(3), 690–700. https://doi.org/10.1111/ppa.12302 DOI: https://doi.org/10.1111/ppa.12302
  4. Chen, T.W., Wu, W.S. (1999). Biological control of carrot black rot. J. Phytopathol., 147(2), 99–104. DOI: https://doi.org/10.1111/j.1439-0434.1999.tb03814.x
  5. Courtial, J., Hamama, L., Helesbeux, J.J., Lecomte, M., Renaux, Y., Guichard, E., Voisine, L., Yovanopoulos, C., Hamon, B., Ogé, L., Richomme, P., Briard, M., Boureau, T., Gagné, S., Poupard, P., Berruyer, R. (2018). Aldaulactone – an original phytotoxic secondary metabolite involved in the aggressiveness of Alternaria dauci on carrot. Front. Plant Sci., 9, 1–29. https://doi.org/10.3389/fpls.2018.00502 DOI: https://doi.org/10.3389/fpls.2018.00502
  6. Cwalina-Ambroziak, B., Amarowicz, R., Tyburski, J., Janiak, M., Nowak, M.K. (2014). Effect of farming systems on pathogen infections and content of phenolic compounds in carrot (Daucus carota L. subsp. sativus (Hoffm.) roots. J. Anim. Plant Sci., 24(4), 1183–1189.
  7. Cwalina-Ambroziak, B., Głosek-Sobieraj, M., Kowalska, E. (2015). The effect of plant growth regulators on the incidence and severity of potato diseases. Pol. J. Natur. Sci., 30(1), 5–20.
  8. Dłużniewska, J. (2018). A response of Rhizoctonia solani Kühn. to biotechnical preparations. J. Res. Appl. Agricul. Engin., 63(2), 33–38.
  9. Farrar, J.J., Pryor, B.A., Davis R.M. (2004). Alternaria diseases of carrot. Plant Dis., 88(8), 776–784. http://dx.doi.org/10.1094/PDIS.2004.88.8.776 DOI: https://doi.org/10.1094/PDIS.2004.88.8.776
  10. Geraldine, A.M., Lopes, F.A.C., Carvalho, D.D.C., Barbosa, E.T., Rodrigues, A.R., Brandao, R.S., Junior, M.L. (2013). Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biol. Control, 67(3), 308–316. https://doi.org/10.1016/j.biocontrol.2013.09.013 DOI: https://doi.org/10.1016/j.biocontrol.2013.09.013
  11. IJHARS – Agricultural and Food Quality Inspection (2019). Available: http://www.ijhars.gov.pl [date of access: 8.02.2022].
  12. Irzykowska, L., Karolewski, L., Weber, Z. (2007). Porównanie występowania grzybów na materiale siewnym i na roślinach marchwi pochodzących z tego materiału [Comparison of the occurrence of fungi on seeds and carrot plants originated from the seeds]. Prog. Plant Prot., 47(2), 109–113 [in Polish].
  13. IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports 106. FAO Rome, 188.
  14. Jayaraman, J., Norrie, J., Punja, Z.K. (2011). Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol., 23, 353–361. https://doi.org/10.1007/s10811-010-9547-1 DOI: https://doi.org/10.1007/s10811-010-9547-1
  15. Journal of Laws of 2004, No. 11, item 94, as amended. Act of 18 December 2003 on plant protection. Journal of Laws of 2004, No. 93, item 898, as amended. Act of 20 April 2004 on organic farming.
  16. Karkleliene, R., Radzevičius, A., Dambrauskiene, E., Surviliene E., Bobinas, Č., Duchovskiene, L., Kavaliauskaite D., Bundiniene˙, O. (2012). Root yield, quality and disease resistance of organically grown carrot (Daucus sativus Röhl.) hybrids and cultivars. Žemdirbyste–Agriculture, 99(4), 393–398.
  17. Leja, M., Kamińska, I., Kramer, M., Maksylewicz-Kaul, A., Kammerer, D., Carle, R. (2013). The content of phenolic compounds and radical scavenging activity varies withcarrot origin and root color. Plant Foods Hum. Nutr., 68(2), 163–170. https://doi.org/10.1007/s11130-013-0351-3 DOI: https://doi.org/10.1007/s11130-013-0351-3
  18. Lima, C.B.D., Rentschler, L.L.A., Bueno, J.T., Boaventura, A.C. (2016). Plant extracts and essential oils on the control of Alternaria alternata, Alternaria dauci and on the germination and emergence of carrot seeds (Daucus carota L.). Ciencia Rural, 46(5), 764–770. https://doi.org/10.1590/0103-8478cr20141660 DOI: https://doi.org/10.1590/0103-8478cr20141660
  19. Mazur, S., Nawrocki, J. (2007a). The influence of carrot plant control against Alternaria blight on the root health status after storage. Veg. Crop. Res. Bull., 67, 117–125. https://doi.org/10.2478/v10032-007-0036-2 DOI: https://doi.org/10.2478/v10032-007-0036-2
  20. Mazur, S., Nawrocki, J. (2007b). Wykorzystanie związków naturalnych w ochronie marchwi przed alternariozą [The application of natural compounds in protection of carrot against Alternaria blight]. Rocz. AR Pozn. 383, Ogrodnictwo, 41, 565–569 [in Polish].
  21. Nasir, A., Abbasi, S., Sharifi, R., Jamali, S. (2018) The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. J. Crop Prot., 7(1), 73–85.
  22. Nuñez, J.J., Davis, R.M. (2016). Diseases of carrot (Daucus carota L. subsp. sativus (Hoffm.) Arcang.). Common names of plant diseases. American Phytopathological Society, St. Paul.
  23. Papenfus, H.B., Kulkarni, M.G., Stirk, W.A., Finnie, J.F., Van Staden, J. (2013). Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings. Sci. Horticult., 151, 142–146. https://doi.org/10.1016/j.scienta.2012.12.022 DOI: https://doi.org/10.1016/j.scienta.2012.12.022
  24. Patkowska, E. (2020). Soil-borne microorganisms threatening carrot cultivated with the use of cover crops. Acta Sci. Pol. Hortorum Cultus, 19(4), 71–86. https://doi.org/10.24326/asphc.2020.4.7 DOI: https://doi.org/10.24326/asphc.2020.4.7
  25. Patkowska, E., Jamiołkowska, A., Błażewicz-Woźniak, M. (2018). Antagonistic activity of selected fungi of the soil environment of carrot. Plant Soil Environ., 64(2), 58–63. https://doi.org/10.17221/792/2017-PSE DOI: https://doi.org/10.17221/792/2017-PSE
  26. Pawelec, A., Dubourg, C., Briard, M. (2006). Evaluation of carrot resistance to Alternaria leaf blight in controlled environments. Plant Pathol., 55(1), 68–72. https://doi.org/10.1111/j.1365-3059.2006.01290.x DOI: https://doi.org/10.1111/j.1365-3059.2006.01290.x
  27. Pryor, B.M., Strandberg, J.O. (2002). Alternaria leaf rlight of carrot, In: Compendium of umbelliferous crop diseases, Davis, R.M., Raid, R.N. (eds.), American Phytopathological Society, St. Paul, Minnesota, 15–16.
  28. Punja, J.K. (2002). Crater rot. In: Compendium of umbelliferous crop diseases, Davis, R.M., Raid, R.N. (eds.). American Phytopathological Society, St. Paul, Minnesota.
  29. Pusz, W., Pląskowska, E. (2008). Wpływ stosowania preparatu Asahi SL na zdrowotność rzepaku ozimego. [Effect of Asahi SL application on the health of winter rape plants]. Zesz. Probl. Post. Nauk Roln., 531, 185–191 [in Polish].
  30. Rogers, P.M., Stevenson, W.R. (2010). Aggressiveness and fungicide sensitivity of Alternaria dauci from cultivated carrot. Plant Dis., 94(4), 405–412. https://doi.org/10.1094/PDIS-94-4-0405 DOI: https://doi.org/10.1094/PDIS-94-4-0405
  31. Schoneveld, J.A. (1994). Effect of irrigation on the prevention of scab in carrots. Acta Hortic., 354, 135–144. DOI: https://doi.org/10.17660/ActaHortic.1994.354.15
  32. Statistics Poland (2019). Central Statistical Office. Available: www.stat.gov.pl [date of access: 8.02.2022].
  33. Töfoli, J.G., Domingues, R.J., Tortolo, M.P.L. (2019). Effect of various fungicides in the control of Alternaria leaf blight in carrot crops. Biology, 81(1), 1–8. https://doi.org/10.31368/1980-6221v81a10010 DOI: https://doi.org/10.31368/1980-6221v81a10010
  34. Tokeshi, H., Alves, M.C., Sanches, A.B., Harada, D.Y. (1998). Effective microorganisms for controlling the phytopathogenic fungus Sclerotinia sclerotiorum in lettuce. Proceedings of the Conference on Effective Microorganisms for a sustainable agriculture and environment. 4th International Conference on Kyusei Nature Farming, Bellingham–Washington, USA, 131–139.
  35. Wang, Y., Duan, Y.B., Zhou, M.G. (2015). Molecular and biochemical characterization of boscalid resistance in laboratory mutants of Sclerotinia sclerotiorum. Plant Pathol., 64(1), 101–108. https://doi.org/10.1111/ppa.12246 DOI: https://doi.org/10.1111/ppa.12246
  36. Wierzbowska, J., Cwalina-Ambroziak, B., Zalewska, M., Światły, A. (2017). Cultivation system versus the content of minerals in carrot (Daucus carota L.) roots. Acta Sci. Pol. Hortorum Cultus, 16(6), 111–123. https://doi.org/10.24326/asphc.2017.6.10 DOI: https://doi.org/10.24326/asphc.2017.6.10
  37. Zhang, X.Y., Hu, J., Zhou, H.Y., Hao, J.J., Xue, Y.F., Chen, H., Wang, B.G. (2014). First report of Fusarium oxysporum and F. solani causing Fusarium dry rot of carrot in China. Plant Dis., 98(9), 1273. https://doi.org/10.1094/PDIS-02-14-0156-PDN DOI: https://doi.org/10.1094/PDIS-02-14-0156-PDN

Downloads

Download data is not yet available.

Most read articles by the same author(s)