Skip to main navigation menu Skip to main content Skip to site footer

Vol. 13 No. 6 (2014)

Articles

EFFECT OF PLANT GROWTH PROMOTING RHIZOBACTERIA ON GROWTH, NUTRIENT, ORGANIC ACID, AMINO ACID AND HORMONE CONTENT OF CAULIFLOWER (Brassica oleracea L. var. botrytis) TRANSPLANTS

Submitted: December 2, 2020
Published: 2014-12-31

Abstract

This study was conducted to determine the effect of different plant growth promoting rhizobacteria (PGPR) strains on growth and quality of cauliflower transplants
under greenhouse conditions. The strains of Bacillus megaterium TV-3D, B. megaterium TV-91C, Pantoea agglomerans RK-92, B. subtilis TV-17C, B. megaterium TV-87A, B. megaterium KBA-10 were used in this study. The results of this study showed that different bacterial inoculations increased plant growth parameters such as fresh shoot weight, dry shoot weight, root diameter, root length, fresh root weight, dry root weight, plant height, stem diameter, leaf area and chlorophyll contents of cauliflower transplant respectively. Except for abscisic acid (ABA), the values of gibberellic acid (GA), salicylic acid (SA), indole acetic acid (IAA) was increased by ratio of 23.64, 89.54 and 25.63%, respectively in compared to the control by application of B. megaterium KBA-10 and P. agglomerans RK-92. The amount of organic acids with B. subtilis TV-17C PGPR applications have increased at a ranging ratio from 9.63 to 186.02%. Also, PGPR inoculations increased the macro and micro nutrient content of cauliflower transplants. As a result, the use of bacteria treatments may provide a means of improving transplant growth and quality
in cauliflower.

References

Adesemoye A.,O., Obini M., Ugoji E.O., 2008. Comparison of plant growth promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian J. Microbiol., 39, 423–426.
Antoine F.R., Wei C.I., Littell R.C., Marshall M.R., 1999. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agr. Food Chem., 47, 5100–5107.
Aristoy M.C., Toldra F., 1991. Deproteinization techniques for HPLC amino acid analy-sis in fresh pork muscle and dry-cured ham. J. Agr. Food Chem., 39, 1792–1795.
Bashan Y., Bashan L.E., 2005. Bacteria. In: Encyclopedia of soils in the environment, Hillel D. (ed.). Elsevier, Oxford, U.K., vol. 1, 103–115.
Battal P., Tileklioğlu B., 2001. The effects of different mineral nutrients on the levels of cytokinins in maize (Zea mays L.). Turk. J. Bot., 25, 123–130.
Bi J., Li C., Zheng Z., Guo L., 2008. Effects of different strains from bacteria manure on growth of cucumber and tomato transplants. J. Qingdao Agricult. Univ. (Nat. Sci.), 2, 144.
Bremner J.M., 1996. Nitrogen total. In: Methods of Soil Analysis. Part III. Chemical Methods, Sparks D.L. (ed.). 2nd ed. Madison, WI, USA, Soil Sci. Soc. Am., 1085–1122.
Cakmakci R., Kantar F., Şahin F., 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci., 164, 527–531.
Cakmakci R., Donmez F., Aydın A., Sahin F., 2006. Growth promoting of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem., 38, 1482–1487.
Cakmakci R., 2009. Promoting of plant growth by ACC deaminase-producing plant promoting bacteria under stress conditions. Atatürk Üniv. Ziraat Fak. Derg., 40(1), 109–125.
Cheikh N., Jones R.J., 1994. Disruption of maize kernel growth and development by heat stress. Plant Physiol., 106, 45–51.
Chen W.S., 1991. Changes in cytokinins before and during early flower bud differentiation in lychee (Litchi chinensis Sonn.). Plant Physiol., 96, 1203–1206.
Cutting J.G.M., 1991. Determination of the cytokinin complement in healthy and witches broom malformed protease. J. Plant Growth Reg., 10, 85–89.
Davies P.J., 1995. The plant hormones; their nature, occurrence and functions. In: Plant Hormones, Davies P.J. (ed.). Boston, MA, USA, Kluwer Academic Publ., 1–39.
Dursun A., Ekinci M., Dönmez M.F., 2008. Effects of inoculation bacteria on chemical content, yielde and growth in rocket (Eruca vesicaria subsp. sativa). Asian J. Chem., 20(4), 3197–3202.
Dursun A., Ekinci M., Dönmez M.F., 2010. Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato Lycopersıcon esculentum L.) and cucumber (Cucumıs satıvus L.). Pakistan J. Bot., 42(5), 3349–3356.
Ekinci M., Dursun A., Dönmez M.F., Eminağaoğlu H., 2009. Effects of different inoculation bacteria on yield and growth in cauliflower (Brassica oleracea var. botrytis). International Rural Development Symposium, İspir–Erzurum, Turkey, 25–27 September, 88–91.
Erman M., Kotan R., Çakmakçı R., Çığ F., Karagöz K., Sezen M., 2010., Effect of nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake Basin on the growth and quality properties in wheat and sugar beet. Turkey IV. Organic Farming Symposium, 28 June – 1 July, Erzurum, Turkey, 325–329.
Esitken A., Ercisli S., Karlidag H., Sahin F., 2005. Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. In: Proceedings of the International Scientific Conference of Environmentally Friendly Fruit Growing, Tartu, Estonia, 90–97.
Esitken A., Pirlak L., Turan M., Sahin F., 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hort., 110, 324–327.
Garcia L.J.A., Probanza A., Ramos B., Manero F.J.G., 2003. Effects of three plant growthpromoting rhizobacteris on the growth of transplants of tomato and pepper in two different sterilized and nonsterilized peats. Arch. Agro. Soil Sci., 49, 119–127.
Gül A., Kıdoğlu F., Tüzel Y., Tüzel H.I., 2008. Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Spanish J. Agri. Res., 6(3), 422–429.
Henderson J.W., Ricker R.D., Bidlingmeyer B.A., Woodward C., 1999. Amino acid analysis using Zorbax Eclipse-AAA Columns and the Agilent 1200 HPLC.
Hernandez-Minea F.M., 1991. Identification of cytokinins and the changes in their endogenous levels in developing Citrus sinensis leaves. J. Hortic. Sci., 66, 505–511.
Ibiene A.A., Agogbua J.U., Okonko I.O., Nwachi G.N., 2012. Plamt growth promoting rhizobacteria (PGPR) as biofertilizer: effect on growth of Lycopersicum esculentus. J. American Sci., 8(2), 318–324.
Karlıdağ H., Eşitken A., Turan M., Şahin F., 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hort., 114, 16–20.
Khan W., Prithiviraj B., Smith D.L., 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol., 160, 485–492
Kokalis-Burelle N., Vavrina C.S., Reddy M.S., Kloepper J.W., 2003. Amandment of muskmelon and watermelon transplant media with plant growth promoting rhizobacteria: Effects on transplant quality, disease, and nematode resistance. HortTech., 13(3), 476–482.
Kotan R., Sahin F., Ala A., 2005. Identification and pathogenicity of bacteria isolated from pome fruits trees in eastern Anatolia region of Turkey. J. Plant Dis. Protect., 113, 8–13.
Kotan R., Mohammadi P., Karagöz K., Dadaşoğlu F., Güneş A., Tozlu E., 2014. Determination of broad spectrum bacterial strains which can be used as biopesticides and biofertilizers in agriculture. Turkey V. Plant Ptotection Symposium, 3–5 February, Antalya, Turkey.
Kumar V., Sharma D.R., 1989. Effect of exogenous proline on growth and ion content in NaCl stressed and nonstressed cells of mungbean, Vigna radiata var. radiate. Indian J. Exper. Biol., 27, 813–815.
Kuraishi S., Tasaki K., Sakurai N., Sadatoku K., 1991. Changes in levels of cytokinins in etiolated squash seedlings after illumination. Plant Cell Physiol., 32, 585–591.
Lucy M., Reed E., Glick B.R., 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86, 1–25.
Marschner H., 1995. Mineral nutrition of higher plants. 2nd ed. London, UK, Academic Press.
Mertens D., 2005a. Plants preparation of laboratory sample. In: Official methods of analysis, 18th ed., Horwitz W., Latimer G.W. (eds.). Gaithersburg, MD, USA, AOAC, 1–2.
Mertens D., 2005b. Metal in plants and pet foods. In: Official methods of analysis, 18th ed., Horwitz W., Latimer G.W. (eds). Gaithersburg, MD, USA, AOAC, 3–4.
Miller L.T., 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol., 16, 584–586.
Misra M., Kumar U., Misra P.K., Prakash V., 2010. Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv. Biol. Res., 4(2), 92–96.
Nezarat S., Gholami A., 2009. Screening plant growth promoting rhizobacteria for improving seed germination, transplant growth and yield of maize. Pakistan J. Biol. Sci., 12(1), 26–32.
Ohwaki Y., Hirata H., 1992. Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospho-lipid level in roots. Soil Sci. Plant Nutr., 38, 235–243.
Palni L.M.S., Summons R.E., Letham D.S., 1983. Mass spectrometric analysis of cytokinins in plant tissues, V, Identification of the cytokinin complex of Datura innoxia crown gall tissue. Plant Physiol., 72, 858–863.
Patten C.L., Glick B.R., 2002. Role of Pseudomonas putida Indolaeacetic Acid in development of the host plant root system. Appl. Environ. Microbiol., 68, 3795–3801.
Pırlak L., Kose M., 2009. Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J. Plant Nutr., 32, 1173–1184.
Qamaruddin M., 1996. Appearance of the zeatin riboside type of cytokinin in Pinus sylvestris seeds after red light treatment. Scand. J. Forest Res., 6, 41–46.
Rana U., Rai V.K., 1996. Modulation of calcium uptake by exogeneous amino acids in Phaseolus vulgaris seedlings. Acta Physiol. Plant, 18, 117–120.
Shaukat K., Affrasayab S., Hasnain S., 2006a. Growth responses of Heliantus annus to plant growth promoting rhizobacteria used as a biofertilizer. J. Agric. Res., 1, 573–581.
Shaukat K., Affrasayab S., Hasnain S., 2006b. Growth responses of Triticum aestivum to plant growth promoting rhizobacteria used as a biofertilizer. Res. J. Microbiol., 1, 330–338.
SPSS, 2010. SPSS Inc. SPSS® 18.0 Base User’s Guide, Prentice Hall.
Turan M., Ekinci M., Yildirim E., Güneş A., Karagöz K., Kotan R., Dursun A., 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Türkish J. Agric. For., 38, 327–333.
Turner J.T., Backman P.A., 1991. Factors relating to peanut yield increase after seed treatment with Bacillus subtilis. Plant Dis., 75, 347–353.
Vavrina C.S., 1999a. The Effect of LS213 (Bacillus pumilis) on plant growth promotion and systemic acquired resistance in muskmelon and watermelon transplants and subsequent field performance. Proc. Int. Symp. Stand Establisment., 107–111.
Vavrina C.S., 1999b. Plant growth promoting rhizobacteria via a transplant plug delivery system in the production of drip irrigated pepper. Institute of Food and Agricultural Sciences, SWFREC Station Report-Veg., 99.6.
Walia A., Metha P., Chauhan A., 2013. Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato transplant under net house conditions. Proc. Nail. Acad. Sci. India, Sect. B, Biol. Sci., 84(1), 145–155.
Yildirim E., Donmez M.F., Turan M., 2008. Use of bioinoculants in ameliorative effect on radish (Raphanus sativus L.) plants under salinity stress. J. Plant Nutr. 31, 2059–2074.
Yildirim E., Turan M., Ekinci M., Dursun A., Cakmakcı R., 2011. Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci. Res. Essay, 6(20), 4389–4396.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.