Abstract
Green moulds caused by Trichoderma result in considerable losses in the growing of several species of cultivated and medicinal mushrooms. Pholiota nameko is
a mushroom species well-known in many Asian countries. The aim of the studies was to determine the effect of substrate infestation with Trichoderma isolates on yielding of P. nameko. The experiment was conducted on four strains of P. nameko, i.e. PN01, PN04, PN05 and PN06. The substrate was infested with isolate T361, belonging to the species T. aggressivum f. europaeum and isolate Th14/5, belonging to the species T. harzianum. Infestation of the substrate with both isolates of Trichoderma resulted in a reduction of yield in the analysed strains of P. nameko. A markedly greater yield reduction was caused by infestation with isolate T361 than isolate Th14/5. Infestation of the substrate with the analysed Trichoderma isolates to a slight extent influenced mean weight of fruiting bodies
in P. nameko and their morphological traits, such as cap diameter, and stem length and diameter. Substrate infestation with Trichoderma isolates had no effect on dry matter content of carpophores.
References
Błaszczyk L., Popiel D., Chełkowski J., Koczyk G., Samuels G. J., Sobieralski K., Siwulski M., 2011. Species diversity of Trichoderma in Poland. J. Appl. Genetics 52 (2), 233–243.
Cha J.Y., Fukui T., Matsumoto H., Chun K.W., Lee S.Y., Ohga S., 2010. Thinned wood of Cryptomeria japonica and Chamaecyparis obtusa for production of Pholiota nameko mushrooms in Japan. J. Fac. Agr., Kyushu Univ. 55 (1), 7–10.
Chen A.W., Arnold N., Stamets P., 2000. Shiitake cultivation systems. Science and cultivation of edible fungi. Red. L.J.L.D. Van Griensven. Balkema, Rotterdam, 771–787.
Cho S.M., Seo G.S., Kim M.K., Lee J.S., 2009. Content of phytosterol composition of Pholiota spp. Korean J. Mycol. 37 (2), 195–197.
Dulger B., 2004. Antimicrobal activity of the macrofungus Pholiota adipose. Fititerapia 75, 395–397.
Florczak J., Niedźwiecka E., Wędzisz A., 2009. Skład chemiczny i aktywność celulolityczna łuskwiaka nameko – Pholiota nameko. Bromat. Chem. Toksykol. 42 (1), 65–69.
Frużyńska-Jóźwiak D., Sobieralski K.., Siwulski M., Spiżewski T., Błaszczyk L., Sas-Golak I., 2011. Effect of infection with Trichoderma isolates on yielding of wild strains of Coprinus comatus (Mǘll.) S.F. Gray. J. Plant Protect. Res. 51 (2), 163–166.
Komoń-Żelazowska M., Bisset J., Zafari D., Hatvani L., Manczinger L., Woo S., Lorito M., Kredics L., Kubicek C.P., Druzhinina I.S., 2007. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl. Environ. Microbiol. 73 (22), 7415–7426.
Krishna A., Sharma B.K., 1989. Domestication of nameko mushroom in India. Mush. Sci., 12, Part 2, 32–39.
Lemke G., 1971. Mycelenzucht und Fruchtkorperprokuktion des Kulturchampignons Agaricus bisporus (Lange). Sing. Gartenbauwissenschaft 36 (18), 19–27.
Li H., Lu X., Zhang S., Lu S., Liu H., 2008. Anti-inflammatory activity of polysaccharide from Pholiota nameko. Biochemistry 73 (6), 669–675.
Li H., Zhang M., Ma G., 2010. Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition 26 (5), 556–562.
Mamoun L.M., Savoie J.M., Olivier J.M., 2000. Interactions between the pathogen Trichoderma harzianum and Agaricus bisporus in mushroom compost. Mycologia 92 (2), 233–240.
Mumpuni A., Sharma H.S.S., Brown A.E., 1998. Effect of metabolites produced by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth radii in culture. Appl. Environ. Microbiol 64, 5053–5056.
Oei P., 2003. Mushroom cultivation, appropriate technology for mushroom growers. Backhuys Publishers, Leiden, pp. 429.
Park M.S., Bae K.S., Yu S.H., 2004a. Molecular and morphological analysis of Trichoderma isolates associated with green mold epidemic of oyster mushroom in Korea. J. Huazhong Agric. Univ. 23, 157–164.
Park M.S., Bae K.S., Yu S.H., 2004b. Morphological and molecular of Trichoderma isolates associated with green mold epidemic of oyster mushroom in Korea, www.mushworld.com.
Park M.S., Bae K.S., Yu S. H., 2004c. Morphological and molecular of Trichoderma isolates associated with green mold epidemic of oyster mushroom in Korea. New Challenges in Mushroom Science. Proceeding of the 3rd Meeting of Far East Asia for Collaboration of Edible Fungi Research, Suwon, Korea, 143–158.
Pawlak R., Siwulski M., 1999. Porównanie plonowania różnych odmian łuskwiaka nameko. Mat. Ogól. Symp. ,,Grzyby – technologia uprawy i przetwarzanie”, Poznań, 15 września, 129–137.
Royse D.J., 1996. Specialty mushrooms. Progress in new crops: Proceedings of the Third National Symposium, Indianapolis, Indiana, USA, 22–25 October, 1996. Ed. Janick J.
Samuels G.J., Dodd S.L., Gams W., Castlebury L.A., Petrini O., 2002. Trichoderma species associated with the green mould epidemic of commercially grown Agaricus bisporus. Mycologia, 94 (1), 146–170.
Sanchez C., 2010. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 85, 1321–1337.
Savoie J.M., Iapicco R. Largeteau-Mamoun M., 2001. Factors influencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom compost. Mycol. Res. 105, 1348–1356.
Sharma S.R., Vijay B., 1996. Yield loss in Pleurotus ostreatus spp. caused by Trichoderma viride. Mushroom Res. 5, 19–22.
Siwulski M., Pawlak R., 2000. Wpływ wilgotności podłoża uprawowego na zawartość suchej substancji w owocnikach łuskwiaka nameko. Zesz. Nauk. AR im. H. Kołłątaja w Krakowie 364 (71), 183–185.
Siwulski M., Sobieralski K., Mańkowski J., 2010. Comparison of mycelium growth of selected species of cultivated mushrooms on textile industry waste. Acta Sci. Pol., Hort. Cultus 9 (3), 37–43.
Siwulski M., Sobieralski K., Błaszczyk L., Frąszczak B., Frużyńska-Jóźwiak D., Sas-Golak I., 2011. Mycelium growth of several Trichoderma pleurotum and T. pleuroticola isolates and their biotic interaction with Pleurotus florida. Phytopathologia 59, 43–48.
Sobieralski K., Siwulski M., Frużyńska-Jóźwiak D., Górski R., 2009. Impact of Trichoderma aggressivum f. europaeum Th2 on the yielding of Agaricus bisporus. Phytopatologia 53, 5–10.
Sobieralski K., Siwulski M., Górski R., Frużyńska-Jóźwiak D., Nowak-Sowińska M., 2010a. Impact of Trichoderma aggressivum f. europaeum isolates on yielding and morphological features of Pleurotus eryngii. Phytopatologia 56, 17–25.
Sobieralski K., Siwulski M., Jasińska A, Frużyńska-Jóźwiak D., Sas-Golak I., Szymański J., 2010b. Impact of infections with Trichoderma agressivum f. europaeum isolates on the yielding of some wild strains of Agaricus bitorquis (Quel.) Sacc. from different regions of Poland. Phytopatol. Pol. 58, 5–11.
Stamets P., 2000. Growing gourmet and medicinal mushrooms. Ten Speed Press, Berkeley, pp. 574.
Szczech M., Stanisza M., Hajdas H., Uliński Z., Szymański J., 2008. Trichoderma spp. – the cause of green mold on Polish mushroom farms. Veg. Crops Res. Bull. 69, 105-124.
Williams J., Clarkson J.M., Mils P.R., Cooper R.M., 2003. Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl. Environm. Microbiol. 69 (7), 4192-4199.
Yamanaka K., 2011. Mushroom cultivation in Japan. WSMBMP Bulletin 4, 1–10.
Zhang G.Q., Sun J., Wang H.X., Ng T.B., 2009. A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim. Pol. 56 (3), 415–421.
Downloads
Download data is not yet available.