Skip to main navigation menu Skip to main content Skip to site footer

Vol. 11 No. 3 (2012)

Articles

THE ROLE OF SUNSHINE DURATION AND AIR TEMPERATURE IN SHAPING VARIABILITY IN DEVELOPMENTAL STAGES OF THE CUCUMBER (Cucumis sativus L.) IN POLAND, 1966–2005

Submitted: December 28, 2020
Published: 2012-06-30

Abstract

Cucumber cultivation in Poland is connected with a certain climatic risk, producing small yields of the plant. Selection of areas suitable for cucumber cultivation
should be based not only on soil conditions and agrotechnical recommendations, but also on knowledge of the rate of growth and development of the plant. The aim of this work was to determine the effect of solar conditions and the thermal conditions of air on the variability of cucumber developmental stages in Poland from 1966–2005. To achieve the goals, data was collected from 28 experimental stations of the Research Centre for Cultivar Testing (RCCT) and 50 meteorological stations of the Institute of Meteorology and Water Management (IMWM) concerning respectively: the duration of cucumber development stages and sunshine duration and air temperature from 1966–2005. The relationship between the duration of developmental stages and the examined meteorological elements
was determined by analysis of linear and second degree polynomial regression and thermal requirements of the cucumber in the period from sowing to the beginning of fruit setting, determined by means of the effective temperature sum method. Results obtained in this work may be used, for example, in the process of adjusting field production of cucumbers to changing climatic conditions in Poland.

References

Akinci S., Abak K., 1999. Determination of a suitable formula for the calculation of sum growing degree days in cucumber. Acta Hort. (ISHS) 492, 273–280.
Baker J.T., Reddy V.R., 2001. Temperature effects on phenological development and yield of muskmelon. Ann. Bot. 87, 605–613.
Biuletyny Agrometeorologiczne 1965–2002. Instytut Meteorologii i Gospodarki Wodnej, Warszawa.
Biuletyny Państwowej Służby Hydrologiczno-Meteorologicznej 2003–2005. Instytut Meteorologii i Gospodarki Wodnej, Warszawa.
Brázdil R., Budìková M., Faško P., Lapin M., 1995. Fluctuation of maximum and minimum air temperatures in the Czech and the Slovak Republics. Atmospheric Res. 37, 53–65.
Bryś K., Bryś T. 2007. Zmienność warunków solarnych klimatu Wrocławia w latach 1875–2004. Pam. Puł. 144, 13–33.
Chmielewski F.M., Müller A., Bruns E., 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric. Forest Meteorol. 121, 69–78.
Deputat T., Marcinkowska I., 1999. Wymagania termiczne pszenicy ozimej. Pam. Puł. 118, 87–98.
Dragańska E., Szwejkowski Z., Panfil M., Orzech K., 2008. Influence of expected climate changes on phenology of corn cultivated for grain in Wielkopolska region. Acta Agrophysica 12(2), 327–336.
Górka W., 1987. Valuation of agroclimatic conditions in Poland for selected vegetables. Agric. Univ. in Szczecin. (in Polish)
Iglesias A., Minguez M.I., 1997. Modelling crop-climate interactions in Spain: vulnerability and adaptation of different agriculural systems to climate change. Mitigation and Adaptation Strategies for Global Change 1, 273–288.
Juszczak R., Leśny J., Olejnik J., 2008. Sumy temperatur efektywnych jako element prognozy agrometeorologicznej Wielkopolskiego Internetowego Serwisu Informacji Agrometeorologicznej (WISIA). Acta Agrophysica 12(2), 409–426.
Kalbarczyk E., 2009. Trends in phenology of spring triticale in response to air temperature changes in Poland. Acta Agrophysica 13(1), 141–153.
Kalbarczyk R., 2009a. Air temperature changes and phenological phases of field cucumber (Cucumis sativus L.) in Poland, 1966–2005. Hort. Sci. (Prague) 36(2), 75–83.
Kalbarczyk R. 2009b. Use of cluster analysis in the determination of the influence of agrotechnical dates and phenological phases on field cucumber (Cucumis sativus L.) yields in Poland. Acta Sci. Pol., Hortorum Cultus 8(1), 63–75.
Kalbarczyk R., Raszka B., Kalbarczyk E., 2011. Variability of the course of tomato growth and development in Poland as an effect of climate change. [In:] Climate Change – Socioeconomic Effects, Eds. J. Blanco, H. Kheradmand, InTech, 279–306.
Kałużewicz A., Krzesiński W., Knaflewski M., Lisiecka J., Spiżewski T., Frąszczak B., 2010.
The effect of temperature on the broccoli yield and length of the period from head initiation to harvest. Acta Sci. Pol., Hortorum Cultus 9(3) 2010, 167–174.
Kożuchowski K., Degirmendžić J., 2005. Contemporary changes of climate in Poland: trends and variation in thermal and solar conditions related to plant vegetation. Pol. J Ecol. 53, 283–297.
Koźmiński C., Michalska B., 2004. Zmienność usłonecznienia rzeczywistego w Polsce. Acta Agrophysica 3(2), 291–305.
Krug H., Liebig H.P., 1991. Response of cucumber to climate (B). Acta Hort. (ISHS) 287, 47–50.
Lederle E., Krug H., 1985. Model experiments for energy saving temperature control for germinating cucumbers. Acta Hort. (ISHS) 156, 105–116.
Lorenc H., 2000. Analysis of the 220 year long Warsaw temperature series and the assessment of its long-term tendencies. Institute of Meteorology and Water Management. Research Material, Series: Meteorology 31. (In Polish)
Marcelis L.F.M., 1993. Effect of assimilate supply on the growth of individual cucumber fruits. Physiologia Plantarum 87(3), 313–320.
Parey S., 2008. Extremely high temperatures in France at the end of the century. Clim. Dyn. 30, 99–112.
Perry K.B., Wehner T.C., Johnson G.L., 1986. Comparison of 14 methods to determine heat unit requirements for cucumber harvest. HortScience 21(3), 419–423.
Perry K.B., Wehner T.C., 1996. A heat unit accumulation method for predicting cucumber harvest date. HortTechnology 6(1), 27–30.
Piróg J., Bykowski G., Krzesiński W., 2010. Effect of substrate type and method of fertigation control on yield size and fruit quality of greenhouse cucumber. Acta Sci. Pol., Hortorum Cultus 9(4) 2010, 99–109.
Pokladníková H., Rožnovský J., Středa T., 2008. Evaluation of soil temperatures at agroclimatological station Pohořelice. Soil & Water Res. 3(4), 223–230.
Scheunemann C., Schonhof I., Vogel G., Fröhlich H., 1990. Influence of elected factors for the timing of fruit vegetables. Acta Hort. (ISHS) 267, 339–347.
Semenov M.A., Barrow E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change 35, 397–414.
Sobczyk M., 1998. Statystyka. Aspekty praktyczne i teoretyczne. Wyd. UMCS, Lublin.
Svenning J.-C., Skov F., 2006. Potential impact of climate change on the northern nemoral forest herb flora of Europe. Biodiversity and Conservation 15, 3341–3356.
Sysoeva M.I., Markovskaya E.F., Kharkina T.G., Sherudilo E.G., 1999. Temperature drop, dry matter accumulation and cold resistance of young cucumber plants. Plant Growth Regulation 28, 89–94.
Tao F., Yokozawa M., Liu J., Zhang Z., 2008. Climate-crop yield relationships at provincial scalesin China and the impacts of recent climate trends. Climate Res. 38, 83–94.
Węgrzyn A., 2007. Klasyfikacja okresów wegetacyjnych pod względem termicznym na Lubelszczyźnie w latach 1951–1990. Acta Agrophysica 9(2), 505–516.
van Minnen J.G., Onigkeit J., Alcamo J. 2002. Critical climate change as an approach to assess climate change impacts in Europe: development and application. Environ. Sci. Policy 5, 335–347.
Várallyay G., 2007. Potential impacts of climate change on agro-ecosystems. Agriculturae Conspectus Scientificus 72(1), 1–8.
Yang S., Logan J., Coffey D.L., 1995. Mathematical formulae for calculating the base temperature for growing degree days. Agric. Forest Meteorol. 74, 61–74.
Zawora T., 2005. Temperatura powietrza w Polsce w latach 1991–2000 na tle okresu normalnego 1961–1990. Acta Agrophysica 6(1), 281–287.
Żmudzka E., 2004. The climatic background of agricultural production in Poland (1951–2000). Miscellanea Geographica 11, 127–137.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.