Skip to main navigation menu Skip to main content Skip to site footer

Vol. 10 No. 3 (2011)

Articles

EFFECT OF SUBSTRATUM AND NUTRIENT SOLUTION UPON YIELDING AND CHEMICAL COMPOSITION OF LEAVES AND FRUITS OF GLASSHOUSE TOMATO GROWN IN PROLONGED CYCLE

Submitted: January 13, 2021
Published: 2011-09-30

Abstract

In the soilless cultivation of tomato under covers the main factors determining the quantity and quality of obtained yield are the kind of substratum used, as well as the content of nutritional solution dosed under plants. Studies conducted in the glasshouse in the years 2005–2007 were aimed at determining the effect of the substratum of rockwool, perlite and expanded clay, as well as two kinds of nutritreint solution of differentiated macroelement concentrations (EC I – 2.4 mS·cm-1 and EC II – 3.6 mS·cm-1) upon yielding and chemical composition of leaves and fruits of tomato cv. 'Cunero F1', grown in extended cycle (22 clusters). Cultivation was conducted with the use of dripping fertigation system, with closed nutrient solution circuit, without recirculation. In the conducted studies no significant differences were found in the total and marketable yield of tomato grown in the examined substrata. Kind of substratum did not also have any significant effect
upon the mean weight of one fruit and number of fruits from a plant. In objects cultivated with a solution with higher macroelement concentration (EC II) significantly higher marketable yield was reported, as well as higher fruit unit weight and less non-marketable fruits compared to the basic nutrient solution (EC I). In the leaves of plants fertilized with solution containing 25% more macroelements (EC II) significantly more total nitrogen, potassium, calcium and magnesium was reported. The fruits of plants fertilized with solution of higher macronutrients concentration (EC II) contained significantly more dry matter (5.71%), nitrogen (2.41% d.m.), phosphorus (0.32% d.m.), potassium (4.23% d.m.), calcium (1096 mg·kg-1 d.w.) and less vitamin C (17.2 mg·100-1g fr.w.) compared to fruit from plants fertilized with basic nutrient solution of EC 2.4 mS·cm-1. In the studies no significant effect of substratum type was found upon the contents of vitamin C, sugars, total nitrogen, phosphorus, calcium and magnesium in tomato fruit.

References

Abukhovich A., Kobryń J., 2010. Yield and changes in the fruit quality of cherry tomato grown on the cocofibre and rockwool slabs used for the second time. Acta Sci. Pol., Hortorum Cultus, 9(4), 93–98.
Adamicki F., Dyśko J., Nawrocka B., Ślusarski C., Wysocka-Owczarek M., 2005. Metodyka integrowanej produkcji pomidorów pod osłonami. PIORIN, Warszawa.
Cabanero F.J., Martinem V., Carvajal M., 2004. Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux witch determines calcium uptake? Plant Science, 166, 443–450.
Campos C.A.B., Fernandes P.D., Gheyi H.R., Blanco F.F., Gancalves C.B., 2006. Yield and fruit quality of industrial tomato under saline irrigation. Sci. Agric. 63(2), 146–152.
Chohura P., Komosa A., 2003. Nutrition status of greenhouse tomato grown in inert media. Part I. Macroelements. Acta Sci. Pol., Hortorum Cultus, 2(2), 3–13.
Dyśko J., Kowalczyk W., 2005. Changes of macro and micronutrients concentrations in root medium and drainage water during tomato cultivation in rockwool. Veget. Crops Resear. Bull., 62, 97–111.
Gajc-Wolska J., Bujalski D., Chrzanowska A., 2008. Effect of a substrate on yielding and quality of greenhouse cucumber fruit. J. Elemnetol., 13(2), 205–210.
Grava A., Matan E., Yehezkel Ch., Abitan A., Samuel D., Plaut Z., 2001. Ion uptake and distribution in tomato plants grown in sand and irrigated brackish water. Acta Hort., 554, 121–130.
Gautier H., Lopez-Lauri F., Massot C., Murshed R., Marty I., Grasselly D. Keller C., Sallanon H., Genard M., 2010. Impact of ripening and salinity on tomato fruit ascorbate content and enzymatic activities related to ascorbate recycling. Fun. Plant Sci. Biotech., 4(1), 66–75.
Hao X., Papadopoulos A.P., Dorais M., Ehret D.L., Turcotte G., Gosselin A., 2000. Improving tomato fruit quality by raising the EC of NFT nutrient solutions and calcium spraying: effect of growth, photosynthesis, yield and quality. Acta Hort., 511, 213–224.
Hao X., Papadopoulos A.P., 2004. Effect of diurnal EC variations on fruit yield and quality of greenhouse tomatoes grown in rockwool. Acta Hort., 633, 263–269.
Jarosz Z., Horodko K., 2004. Plonowanie I skład chemiczny pomidora szklarniowego uprawianego w podłożach inertnych. Rocz. AR, Pozn. 356, Ogrodnictwo, 37, 81–86.
Jarosz Z., Dzida K., 2005. The effect of inert substrates on yielding and fruits mineral composition of tomato grown in greenhouse. Annales UMCS, EEE, Horticultura 15, 59–64.
Jarosz Z., 2006. Effect of different types of potassium fertilization on the yielding of greenhouse tomatoes grown in various substrates. Acta Sci. Pol., Hortorum Cultus, 5(1), 3–9.
Komosa A., Kołota E., Chohura P., (2002): Wpływ stosunku N:K w pożywkach na plonowanie pomidora szklarniowego uprawianego w wełnie mineralnej. Rocz. AR, Pozn. 341, Ogrodnictwo, 35, 117–123.
Komosa A., Kleiber T., 2007. Sód i chlorki w wodach drenarskich w uprawie anturium (Anthurium cultorum Schoot) w keramzycie. Rocz. AR Pozn., 383, Ogrodnictwo, 41, 63–68.
Komosa A., Kleiber T., Piróg J., 2010. Contents of macro- and microelements in root environment of greenhouse tomato grown in rockwool and wood fiber depending on nitrogen levels in nutrient solutions. Acta Sci. Pol., Hortorum Cultus, 9(3), 59–68.
Magan J.J., Gallardo M., Thompson R.B., Lorenzo P., 2008. Effect of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouse in Mediterranean climatic conditions. Agric. Water Manag., 95(9), 1041–1055.
Nurzyński J., 2005. Effect of different fertilization levels on yielding of greenhouse tomato grown on sand, peat or rockwool grown media. Veget. Crops Resear. Bull., 63, 101–107.
Ostrowska A., Gawliński S., Szczubiałka Z., 1991. Metody analizy i oceny gleb i roślin. Instytut Ochrony Środowiska, Warszawa.
Pawlińska A., Komosa A., 2004. Wpływ podłoży i pożywek na plonowanie pomidora szklarniowego. Rocz. AR Pozn., 356, Ogrodnictwo 37, 173–180.
PN-A-04019 1998. Oznaczanie zawartości witaminy C.
PN-90/A-75101/03. Oznaczanie zawartości suchej masy metodą wagową.
Rutkowska U., 1981. Wybrane metody badań składu i wartości odżywczej żywności. PZWL, Warszawa
Rozporządzenie Komisji EWG nr 778/83. 1983. Rozporządzenie określające normy jakościowe dla pomidorów. Dz. U. EWG nr 86 z 31.03.1983, 14–18.
Tantawy A.S., Abdel-Mawgout A.M.R., El-Nemr M.A., Chamoun Y., 2009. Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Europ. J. Scien. Res., 30(3), 484–494.
Tuzel Y., Tuzel I.H., Ucer F., 2003. Effects of salinity on tomato growing in substrate culture. Acta Hort., 609, 329–335.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

<< < 81 82 83 84 85 86 87 88 89 90 > >> 

You may also start an advanced similarity search for this article.