Skip to main navigation menu Skip to main content Skip to site footer

Vol. 17 No. 5 (2018)

Articles

EFFECT OF IRON NANO CHELATE ON ANTIOXIDANT ACTIVITY, POLYPHENOLIC CONTENTS AND ESSENTIAL OIL COMPOSITION OF PORTULACA OLERACEA L.

DOI: https://doi.org/10.24326/asphc.2018.5.16
Submitted: November 30, 2018
Published: 2018-11-30

Abstract

In the present study, using ultrasonic irradiations, a novel nano-sized iron complex has been prepared from aminolevulinic acid and iron(III) nitrate under greenhouse conditions. The obtained Fe nano-sized complex has been characterized by two methods of Fourier-transform infrared spectroscopy (FTIR) and EDX spectra (Energy-dispersive X-ray spectroscopy). Also, the morphology and size of the nano-complex were determined using transmission electron microscopy (TEM) and it showed an acceptable size in the nano range (5–20 nm). In this work, purslane plants were supplied with Fe(III)–aminolevulinic acid (Fe-ALA) as a new nano-sized complex and Fe-EDDHA [Fe-ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid)]. The mineral nutrients concentrations, total phenolic, ascorbic acid contents and antioxidant activity were the highest in plants treated with Fe-ALA nano-complex. Catechin was the predominant phenolic compound in all treated plants. Fe nano-complex at the rate of 0.2% induced extra high phenolic compounds value. Shoot Fe, Zn, N, Mg, Ca and K contents were also higher in Fe nano-complex treated plants than the control and in plants that were treated by Fe-EDDHA. Overall, the nutritional and pharmaceutical quality of Portulaca oleracea improved the use of the nano-sized Fe-ALA complex as a new iron source. 

References

  1. Alizadeh, A., Khoshkhui, M., Javidnia, K., Firuzi, O., Tafazoli, E., Khalighi, A. (2010). Effects of fertilizer on yield, essential oil composition, total phenolic content and antioxidant activity in Satureja hortensis L. (Lamiaceae) cultivated in Iran. J. Med. Plants Res., 4(1), 33–40.
  2. Benzon, H.R.L., Rubenecia, M.R.U., Ultra, V.U., Lee, J.S.Ch. (2015). Nano-fertilizer affects the growth, development, and chemical properties of rice. Int. J. Agron. Agric. Res., 7(1), 105–117.
  3. Burits, M., Asres, K., Bucar, F. (2001). The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytother. Res., 15, 103–108.
  4. Cuin, T.A., Shabala, S. (2007). Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta, 225, 753–761.
  5. Delfani, M., Firouzabadi, M.B., Farrokhi, N., Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal., 45, 530–540.
  6. Erkan, N., Akgonen, S., Ovat, S., Goksel, G., Ayranci, E. (2011). Phenolic compounds profile and antioxidant activity of Dorystoechas hastata L. Boiss et Heldr. Food Res. Int., 44, 3013–3020.
  7. Essa, T.A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max LMerrill) cultivars. J. Agron. Crop Sci., 188, 86–93.
  8. Fageria, N.K., Baligar, V.C., Wright, R.J. (1990). Iron nutrition of plants: an overview on the chemistry and physiology of its deficiency and toxicity. Pesq. Agropec. Bras. Brasilia., 25(4), 553–570.
  9. Ghasemi, S., Khoshgoftarmanesh, A.H., Hadadzadeh, H., Afyuni, M. (2014). Synthesis, characterization, theoretical and experimental investigations of zinc (II)–amino acid complexes as ecofriendly plant growth promoters and highly bioavailable sources of zinc. J. Plant Growth Regul., 32, 315–323.
  10. Halicia, M., Odabasoglua, F., Suleymanb, H., Cakirc, A., Asland, A., Bayir, Y. (2005). Effects of water extract of Usnea longissima on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Phytomedicine, 12, 656–662.
  11. Higdon, J.V., Frei, B. (2003). Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr., 43(1), 89–143.
  12. Hoque, M.A., Banu, M.N.A., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y., Murata, Y. (2007). Exogenous proline and glycinebetaine ingresses NaCl-induced ascorbate glutathione cycle enzyme activities and proline improves salt tolerance more than glycinebetaine in tobacco Bright yellow-2 suspension-cultured cells. J. Plant Physiol., 164, 553–561.
  13. Justesen, U., Knuthsen, P., Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A, 799, 101–110.
  14. Karimi, Z., Pourakbar, L., Feizi, H. (2014). Comparison effect of nano-iron chelate and iron chelate on growth parameters and antioxidant enzymes activity of mung bean (Vigna radiate L.). Adv. Environ. Biol., 8(13), 916–930.
  15. Kaviani, B., Vali Fakouri Ghaziani, M., Negahdar, N. (2016). The effect of iron nano-chelate fertilizer and cycocel (CCC) on some quantity and quality characters of Euphorbia pulcherrima Willd. J. Med. Bioengineer., 5(1), 41–44.
  16. Knekt, P., Jarvinen, R., Reunanen, A., Maatela, J. (1996). Flavonoid intake and coronary mortality in Finland: a cohort study. Br. Med. J., 312, 478–481.
  17. Koleva, L.L., Van Beek, T.A., Linssen, J.P.H., De Groot, A., Evstatieva, L.N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal., 13, 8–17.
  18. Kursat, C., Semra, K., Kudret, K. (2007). Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines. Acta Physiol. Plant., 29, 551–557.
  19. Li, B.B., Smith, B., Hossain, M.M. (2006). Extraction of phenolics from citrus peles: I. solvent extraction method. Sep. Purif. Technol., 48, 182–188.
  20. Liu, L., Howe, P., Zhou, Y.F., Xu, Z.Q., Hocart, C., Zhang, R. (2000). Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. J. Chromatogr. A., 893, 207–213.
  21. Lopez-Velez, M., Martinez-Martinez, F., Del Valle-Ribes, C. (2003). The study of phenolic compounds as natural antioxidants in wine. Critic. Rev. Food Sci. Nutr., 43(3), 233–244. DOI: 10.1080/727072831.
  22. Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R., Tao, M.X. (2002). Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci., 21(3), 68–172.
  23. Maleki Farahani, S., Khalesi, A., Sharghi, Y. (2015). Effect of nano iron chelate fertilizer on iron absorption and saffron (Crocus sativus L.) quantitative and qualitative characteristics. Asian J. Biol. Sci., 8(2), 72–82.
  24. Manach, C., Scalbert, A., Morand, C., Remesy, C., Jimenez, L. (2004). Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 79, 727–747.
  25. Metsarinne, S., Rantanen, P., Aksela, R., Tuhkanen, T. (2004). Biological and photochemical degradation rates of diethylene triamine penta acetic acid (DTPA) in the presence and absence of Fe(III). Chemosphere, 55(3), 379–388.
  26. Murata, Y., Harada, E., Sugase, K., Namba, K., Horikawa, M., Ma, J.F., Yamaji, N., Ueno, D., Nomoto, K., Iwashita, T., Kusumoto, S. (2008). Specific transporter for iron(III)–phytosiderophore complex involved in iron uptake by barley roots. Pure Appl. Chem., 80, 2689–2697.
  27. Naderi, M.R., Danesh Shahraki, A. (2011). Nano-fertilizers and their role in agriculture. Takta J., 86, 66–73.
  28. Najafian, Sh., Zahedifar, M. (2015). Antioxidant activity and essential oil composition of Satureja hortensis L. as influenced by sulfur fertilizer. J. Sci. Food Agric., 95(12), 2404–2408.
  29. Nassar, A.H., El-Tarabily, K.A., Sivasithamparam, K. (2003). Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Regul., 40, 97–106.
  30. Njogu, R.E.N., Kariuki, D.K., Kamau, D.M., Wachira, F.N. (2014). Relationship between tea (Camellia sinensis) leaf uptake of major nutrients, nitrogen, phosphorous and potassium (NPK) and leaf anatomy of different varieties grown in the Kenyan highlands. BEST: Int. J. Humanit. Arts Med. Sci., 2(8), 95–102.
  31. Obatolu, C.R. (1999). Correction of magnesium deficiency in tea plants through foliar applications. Commun. Soil Sci. Plant Anal., 30, 1649–1655.
  32. Omidbeigi, R. (2008). Book of production and processing of medicinal plants. Vol. I. Astan Ghods Razavi Press, Tehran, 438 pp.
  33. Othman, A., Ismail, A., Ghani, A.N., Adenan, I. (2007). Antioxidant capacity and phenolic content of cocoa beans. Food Chem., 100, 1523–1530.
  34. Parr, A.J., Bolwell, G.P. (2000). Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric., 80, 985–1012.
  35. Percival, M. (1998). Antioxidants. Clin. Nutr. Insight, 31, 1–4.
  36. Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, T.S., Sajanlal, P.R., Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr., 35(6), 905–927.
  37. Ramzani, P.M.A., Khalid, M., Anjum, Sh., Khan, W.D., Iqbal, M., Kausar, S. (2016). Improving iron bioavailability and nutritional value of maize (Zea mays L.) in sulfur-treated calcareous soil, Arch. Agron. Soil Sci., DOI: 10.1080/03650340.2016.1266484.
  38. Rodríguez-Lucena, P., Hernández-Apaolaza, L., Lucena, J.J. (2010). Comparison of iron chelates and complexes supplied as foliar sprays and in nutrient solution to correct iron chlorosis of soybean. J. Plant Nutr. Soil Sci., 173, 120–126.
  39. Rui, M., Ma, Ch., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., Zhu, S. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci., 7, 815.
  40. Svennerstam, H., Ganeteg, U., Bellini, C., Nasholm, T. (2007). Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter to be involved in plant uptake of amino acids. Plant Physiol., 143, 1853–1860.
  41. Uddin, K., Juraimi, A.Sh., Hossain, S., Nahar, A.U., Ali, E., Rahman, M.M. (2014). Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci. World J., article ID 951019, http://dx.doi.org/10.1155/2014/951019.
  42. Vadas, T.M., Zhang, X., Curran, A.M., Ahner, B.A. (2007). Fate of DTPA, EDTA and EDDS in hydroponic media and effects on plant mineral nutrition. J. Plant Nutr., 30(8), 1229–1246.
  43. Wei, Y., Fang, Z., Zheng, L., Tan, L., Tsang, E.P. (2016). Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Mat. Letters, 185, 384–386.
  44. Xiang, L., Xing, D., Wang, W., Wang, R., Ding, Y., Du, L. (2005). Alkaloids from Portulaca oleracea L. Phytochem., 66, 2595–2601.
  45. Yildirim, A., Mavi, A., Kara, A.A. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 49, 4083–4089.
  46. Yousefzadeh, S., Sabaghnia, N. (2016). Nano-iron fertilizer effects on some plant traits of dragonhead (Dracocephalum moldavica L.) under different sowing densities. Acta Agric. Slovenica, 107, 429–437.

Downloads

Download data is not yet available.

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.