Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 3 (2021)

Articles

FAT AND TOCOPHEROL CONTENT IN THE SEEDS OF RED AMARANTH IN CONDITIONS OF DIVERSIFIED FERTILIZATION WITH MACROELEMENTS

DOI: https://doi.org/10.24326/asphc.2021.3.11
Submitted: April 1, 2019
Published: 2021-06-30

Abstract

The aim of the study was to determine the content of fat and tocopherols in the seeds of Polish cultivars of red amaranth (Amaranthus cruentus L.) – Rawa and Aztek – under the influence of varied macroelement fertilization in the environmental conditions of the Zamość region of south-eastern Poland. In a three-year field experiment (2013–2015) set up in a randomized split-plot design, red amaranth was grown as a test plant at wide row spacing, on good wheat complex soil, in south-eastern Poland (N – 50º71', E – 23º04'). The field experiment had three variables: the weather in the years of research; four combinations of NPK application and two cultivars of the test plant – Rawa and Aztek. The research showed that the factor that most influenced the content of crude fat in the amaranth seeds was the cultivar, followed by the combination of NPK fertilization. The amount of α-tocopherol and total tocopherol depended significantly on the genetic factor and the fertilization combination, while the amount of β-tocopherol was determined more by fertilization than by the cultivar. The content of γ-tocopherol and δ-tocopherol was dependent only on the cultivar.

References

  1. Abolaji, G.T., Olooto, F.M., Ogundele, D. T., Williams, F.E. (2017). Nutritional characterization of grain amaranth grown in Nigeria for food security and healthy living. Agrosearch, 17, 2, 1–10, DOI:10.4314/agrosh.v17i2.1.
  2. Bozorov, S.S., Berdiev, N.S., Ishimov, U.J., Olimjonov, S.S., Ziyavitdinov, J.F., Asrorov, A.M., Salikhov, S.I. (2018). Chemical composition and biological activity of seed oil of amaranth varieties. Nova Biotechnol. Chim., 17(1), 66–73, DOI: 10.2478/nbec-2018-0007.
  3. Bressan, R. (1994). Composition and nutritional properties of amaranth. In: Amaranth-biology, chemistry and technology, O. Paredes-Lopez (ed.). CRC Press, London, 185–206.
  4. Carrãro-Panizzi, M.C., Erhan, S.Z. (2007). Environmental and genetic variation of soyben tocopherol content under Brazilian growing conditions. J. Am. Oil Chem. Soc., 84, 921–928, DOI:10.1007/s11746-007-1128-3.
  5. Czaplicki, S., Ogrodowska, D., Zadernowski, R., Derewiaka, D. (2012). Characteristics of biologically-active substances of amaranth oil obtained by various techniques. Pol. J. Food Nutr. Sci., 62(4), 235–239, DOI:10.2478/v10222-012-0054-8.
  6. Dodok, L., Modhir, A.A., Halásová, G., Poláček, I., Hozová B. (1994). Importance and utilization of amaranth in food industry. Part I. Characteristic of grain and average chemical constitution of whole amaranth flour. Mol. Nutr. Food Res., 38(4), 378–381, DOI:10.1002/food.19940380405.
  7. Egesel, C.Ö., Gül M.K., Kahriman F., Özer I., Türk F. (2008). The effect of nitrogen fertilization on tocopherols in rapeseed genotypes. Eur. Food Res. Technol., 227, 871–880.
  8. Egesel C.Ö., Wong, J.C., Lambert, R.J., Rocheford, T.R. (2003). Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci., 43, 818–823.
  9. Gogolewski, M., Nogala-Kalucka, M., Szeliga, M. (2000). Changes of the tocopherol and fatty acid contents in rapeseed oil during refining. Eur. J. Sci. Technol., 102, 618–623, DOI:10.1002/1438-9312(200010)102:10<618::AID-EJLT618>3.0.CO;2-6.
  10. Gunstone, F.D., Harwood, J.L., Dijkstra, A.J. (2007). The lipid handbook. CRC Press, Boca Raton, pp. 73.
  11. Januszewska-Jóźwiak, K., Synowiecki, J. (2008). Characteristics and suitability of amaranth components in food biotechnology. Biotechnologia, 3, 89–102.
  12. Kozak, M., Malarz, W., Kotecki, A., Serafin-Andrzejewska, M. (2011). Wpływ zróżnicowanego nawożenia azotem na rozwój, plonowanie i skład chemiczny amarantusa uprawnego [The effect of different nitrogen fertilization on growth and yielding of amaranthus]. Zesz. Nauk. UP Wroc., Rolnictwo, 98(581), 79–94 [in Polish].
  13. Lacatusu, I., Arsenie L.V., Badea G., Popa O., Oprea O., Badea N. (2018). New cosmetic formulations with broad photoprotective and antioxidative activities designed by amaranth and pumpkin seed oils nanocarriers. Ind. Crops Prod., 123, 424–433, DOI:10.1016/j.indcrop.2018.06.083.
  14. Li, H., Deng, Z., Liu, R., Zhu, H., Draves, J., Marcone, M., Sun, Y., Tsao, R. (2015). Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compos. Anal., 37, 75–81, DOI:10.1016/j.jfca.2014.09.003.
  15. López-Mejía, O.A., López-Malo, A., Palou, E. (2013). Antioxidant capacity of extracts from amaranth (Amaranthus hypochondriacus L.) seeds or leaves. Ind. Crops Prod., 53, 55–59, DOI:10.1016/j.indcrop.2013.12.017.
  16. Marwede, V., Gül, M.K., Becker, H.C., Ecke, W. (2005). Mapping of QTL controlling tocopherol contents in winter oilseed rape (Brasicca napus L.). Plant Breed., 124, 20–26.
  17. Mburu, M.W., Gikonyo, N.K., Kenji, G.M., Mwasaru, A.M. (2012). Nutritional and functional properties of a complementary food based on kenyan amaranth grain (Amaranthus cruentus). Afr. J. Food Agric. Nutr. Dev., 12(2), https://www.ajol.info/index.php/ajfand/article/view/75608/66145.
  18. Motta, C., Delgado, I., Matos, A.S., Gonzales, G.B., Torres, D., Santos, M., Chandra-Hioe, M.V., Arcot, J., Castanheir, I. (2017). Folates in quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum): Influence of cooking and malting. J. Food Compos. Anal., 64(2), 181–187, DOI:10.1016/j.jfca.2017.09.003.
  19. Nogala-Kalucka, M. (1999). Studia nad składem niektórych komponentów kondensatów podeodoryzacyjnych z możliwością wykorzystania z nich tokoferoli. [Studies on the composition of some components of the postdeodorization distillates- possibilities of utilizing the tocopherols contained in them]. Rocz. AR Pozn. Rozpr. Nauk., 297 [in Polish].
  20. Nogala-Kałucka, M., Gogolewski, M., Lampart-Szczapa, E., Jaworek, M., Singel, A., Szulczewska, A. (2003). Determination of witamin E active compounds as biological antioxidant occurring in rapeseeds of the selected varieties. Rośl. Oleiste – Oilseed Crops, 24(2), 577–586.
  21. Obiedzińska, A., Waszkiewicz-Robak, B. (2012). Oleje tłoczone na zimno jako żywność funkcjonalna [Cold pressed oils as functional food]. Żywn. Nauka Technol. Jakość, 1(80), 27–44 [in Polish].
  22. Ogrodowska, D., Czaplicki, S., Zadernowski, R. (2011). Substancje biologicznie aktywne naturalnie występujące w oleju amarantusowym [Biologically active substances naturally occurring in amaranth oil]. Bromat. Chem. Toksykol., 14(3), 639–644 [in Polish].
  23. Palombini, S.V., Claus, T., Maruyama, S.A., Gohara, A.K., Souza, A.H.P., Souza, N.E., Visentainer, J.V., Gomes, S.T.M., Matsushit, M. (2013). Evaluation of nutritional compounds in new amaranth and quinoa cultivars. Food Sci. Technol. Campinas, 33(2), 339–344, DOI:10.1590/S0101-20612013005000051.
  24. Petkova, Z.Y., Antova, G.A., Angelova-Romova, M.I., Vaseva, I.C. (2019). A comparative study on chemical and lipid composition of amaranth seeds with different origin. Bulg. Chem. Commun., 51, D, 262–267.
  25. Skwaryło-Bednarz, B. (2012). Assessment of content of fat and tocopherols in seeds of amaranthus in relation to diversified fertilization with macroelements. Ecol. Chem. Engin. S, 19(2), 273–279, DOI:10.2478/v10216-011-0021-z.
  26. Skwaryło-Bednarz, B., Brodowska, M.S., Brodowski, R. (2011). Evaluating the influence of varied NPK fertilization on yielding and microelements contents at amaranth (Amaranthus cruentus L.) depending on its cultivar and plant spacing. Acta Sci. Pol. Hortorum Cultus, 10(4), 245–261.
  27. Skwaryło-Bednarz, B., Krzepiłko, A. (2009a). Effect of different fertilization on enzyme activity in rhizosphere and non-rhizosphere of amaranth. Int. Agroph., 23(4), 409–412.
  28. Skwaryło-Bednarz, B., Krzepiłko, A. (2009b). Effect of various NPK fertilizer doses on total antioxidant capacity of soil and amaranth leaves (Amaranthus cruentus L.). Int. Agroph., 23(1), 61–65.
  29. Skwaryło-Bednarz, B., Nalborczyk, E. (2006). Uprawa i wykorzystanie amarantusa [Cultivation and utilization of amaranth]. Wieś Jutra, 4(93), 52–55 [in Polish].
  30. Skwaryło-Bednarz, B., Stępniak, P., Jamiołkowska, A., Kopacki, M., Krzepiłko, A., Klikocka, H. (2020). Amaranth seeds as a source of nutrients and bioactive substances in human diet. Acta Sci. Pol. Hortorum Cultus,19(6), 153–164, DOI: 10.24326/asphc.2020.6.13.
  31. Soriano-García, M., Aguirre-Díaz, I.S. (2019). Nutritional functional value and therapeutic utilization of amaranth. IntechOpen, open access peer-reviewed chapter, DOI: 10.5772/intechopen.86897.
  32. Szwejkowska, B., Bielski, S. (2012). Wartość prozdrowotna nasion szarłatu (Amaranthus cruentus L.) [Pro-health value of amaranth seed (Amaranthus cruentus L.)]. Post. Fitoter. 4, 240–243 [in Polish].
  33. Tang, Y., Li, X., Chen, P.X., Zhang, B., Hernandez, M., Zhang, H., Marcone, M.F., Liu, R., Tsao, R. (2014). Lipids, tocopherols, and carotenoids in leaves of amaranth and quinoa cultivars and a new approach to overall evaluation of nutritional quality traits. J. Agric. Food Chem., 62 (52), 12610–12619, DOI:10.1021/jf504637.
  34. Tang, Y., Li, X., Chen, P.X., Zhang, B., Liu, R., Hernandez, M., Dravws, J., Marcone, M.F., Tsao, R. (2016). Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem., 64(5), 1103–1110, DOI:10.1021/acs.jafc.5b05414.
  35. Tarasevičienė, Ž., Viršilė, A., Danilčenko, H., Duchovskis, P., Paulauskienė, A., Gajewski, M. (2019). Effects of germination time on the antioxidant properties of edible seeds. CyTa, 17(1), 447-454, DOI: 10.1080/19476337.2018.1553895.
  36. Tömösközi, S., Baracskai, I., Schönlechner, R., Berghofer, E., Lásztity, R. (2009). Comparative study of composition and technological quality of amaranth. I. Gross chemical composition, amino acid and mineral content. Acta Aliment., 38, 341–347, DOI:10.1556/AAlim.38.2009.3.8.
  37. USDA (2019). National Nutrient Database for Standard Reference, FoodData Central, usda.gov.
  38. Velasco L., Fernández-Martinez J.M., Garcia-Ruiz R., Dominguez J. (2002). Genetic and environmental variation for tocopherol content and composition in sunflower commercial hybrids. J. Agric. Sci., 139, 425-429, DOI: 10.1017/S0021859602002678.
  39. Zubr, J., Matthӓus, B. (2002). Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crops Prod. 15(2), 155–162, DOI:10.1016/S0926-6690(01)00106-6.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 58 59 60 61 62 63 64 65 66 67 > >> 

You may also start an advanced similarity search for this article.