Skip to main navigation menu Skip to main content Skip to site footer

Vol. 21 No. 3 (2022)

Articles

EFFECT OF DAILY LIGHT INTEGRAL ON PHYSIOLOGICAL AND MORPHOLOGICAL QUALITY OF INDOOR PLANTS IN VERTICAL GARDEN

DOI: https://doi.org/10.24326/asphc.2022.3.11
Submitted: September 16, 2021
Published: 2022-06-30

Abstract

Performance and appearance of vertical gardens are affected by plant quality, which is why creating conditions for their proper growth is crucial. Insufficient amount of light inside buildings significantly limits plant development, especially in the autumn and winter in the northern hemisphere. The objective of this study was to investigate physiological and morphological quality of plant species, Asplenium, Chlorophytum and Philodendron, in an indoor vertical garden exposed to two levels of daily light integral (DLI). Higher DLI level (1.1-1.7 mol m−2 day‑1) improved plant diameter, height, leaf length and width, leaf area, total area of leaf blades, dry weight, and carotenoid content, however did not affected leaf fresh weight and leaf number. Chlorophytum and Asplenium were particularly responsive to natural light supplementation and were distinguished by the best growth habit and compactness.

References

  1. Bergstrand, K., Schüssler, H. (2013). Growth, development and photosynthesis of some horticultural plants as affected by different supplementary lighting technologies. Europ. J. Hortic. Sci., 78(3), 119–125. https://doi.org/10.1016/10.17660/eJHS.2016/81.5.1
  2. Cao, Y., Li, F., Wang, Y., Yu, Y., Wang, Z., Liu, X., Ding, K. (2019). Assisted deposition of PM2.5 from indoor air by ornamental potted plants. Sustainability, 11, 2546. https://doi.org/10.3390/su11092546 DOI: https://doi.org/10.3390/su11092546
  3. Chaipong, S. (2020). Indoor plants species survival under different environment in indoor vertical garden. Int. J. geomate, 18(68), 15–20. https://doi.org/10.21660/2020.68.5572 DOI: https://doi.org/10.21660/2020.68.5572
  4. Dai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway, D., Lu, H. (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot., 65, 177–182. https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.envexpbot.2008.12.008
  5. j.envexpbot.2008.12.008 DOI: https://doi.org/10.1088/1126-6708/2008/12/008
  6. Egea, G., Perez-Urrestarazu, L., Gonzalez-Perez, J., Franco-Salas, A., Fernandez-Canero, R. (2014). Lighting systems evaluation for indoor living walls. Urban. For. Urban. Green., 13(3), 475–483. https://doi.org/10.1016/j.ufug.2014.04.009 DOI: https://doi.org/10.1016/j.ufug.2014.04.009
  7. Faust, J., Logan, J. (2018). Daily light integral: A research review and high-resolution maps of the United States. HortScience, 53(9), 1250–1257. https://doi.org/10.21273/HORTSCI13144-18 DOI: https://doi.org/10.21273/HORTSCI13144-18
  8. Gawrońska, H., Bakera, B. (2015). Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health, 8, 265–272. https://doi.org/10.1007/s11869-014-0285-4 DOI: https://doi.org/10.1007/s11869-014-0285-4
  9. Giorgioni, M. (2010). Effects of artificial PPF intensity and ambient CO2 level on photosynthesis of Araceae species commonly used for interior landscaping. Acta Hortic., 88, 607–702. https://doi.org/10.17660/ActaHortic. DOI: https://doi.org/10.17660/ActaHortic.2010.881.114
  10. 881.114
  11. Goto, E. (2003). Effects of light quality on growth of crop plants under artificial lighting. Environ. Control Biol., 41, 121–132. https://doi.org/10.2525/ecb1963.41.121 DOI: https://doi.org/10.2525/ecb1963.41.121
  12. Han, K., Ruan, L. (2019). Effects of Indoor plants on self-reported perceptions: a systemic review. Sustainability, 11, 4506. https://doi.org/10.3390/su11164506 DOI: https://doi.org/10.3390/su11164506
  13. Kaltsidi, M., Fernández-Cañero, R., Pérez-Urrestarazu L. (2020). Assessment of different LED lighting systems for indoor living walls. Sci. Hortic., 272, 109522. https://doi.org/10.1016/j.scienta.2020.109522 DOI: https://doi.org/10.1016/j.scienta.2020.109522
  14. Kami, C., Lorrain, S., Hormitschek, P., Fankhauser, C. (2010). Light-regulated plant growth and development. Curr. Top. Dev. Biol., 91, 19–66. https://doi.org/10.1016/S0070-2153(10)91002-8 DOI: https://doi.org/10.1016/S0070-2153(10)91002-8
  15. Korczynski, P., Logan, J., Faust, J. (2002). Mapping monthly distribution of daily light integrals across the contiguous United States. HortTechnology, 12(1), 12–16. https://doi.org/10.21273/HORTTECH.12.1.12 DOI: https://doi.org/10.21273/HORTTECH.12.1.12
  16. Lichtenthaler, H., Buschmann, C. (2001). Extraction of photosynthetic tissues: chlorophylls and carotenoids. In: Current protocols in food analytical chemistry, Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwarts, S.J., (eds). John Wiley and Sons, New York, USA, F4.2.1eF4.2.6
  17. Manda, M., Nicu, C., Zamfir-Vâșcă, D. (2018). The effect of different light conditions on the growth and development of Chlorophytum amaniense Engl. ‘Fire Flash’. Horticulture, Series B, LXII, 605–610.
  18. Matuszko, D., Celiński-Myslaw, D. (2016). Warunki solarne Krakowa i możliwości ich wykorzystania w helioenergetyce [Solar conditions in Krakow and their potential for helioenergetics]. Acta Sci. Pol., Formatio Circumiectus, 15(1), 103–111. https://doi.org/10.15576/ASP.FC/2016.15.1.103 DOI: https://doi.org/10.15576/ASP.FC.2016.1.103
  19. Middleton, L. (2001). Shade-tolerant flowering plants: adaptations and horticultural implications. Acta Hortic., 552, 95–102. https://doi.org/10.17660/ActaHortic.2001.552.9 DOI: https://doi.org/10.17660/ActaHortic.2001.552.9
  20. Mortensen, L., Gislerød, H. (1990). Effects of air humidity and supplementary lighting on foliage plants. Sci. Hortic., 44, 301–308. https://doi.org/10.1016/0304-4238(90)90130-7 DOI: https://doi.org/10.1016/0304-4238(90)90130-7
  21. Moya, T., Dobbelsteen, A., Ottelé, M., Bluyssen, P. (2019). A review of green systems within the indoor environment. Indoor Built Environ., 28(3), 298–309. https://doi.org/10.1177/1420326X18783042 DOI: https://doi.org/10.1177/1420326X18783042
  22. Rehman, M., Ullah, S., Bao, Y., Wang, B., Liu, X., Ding, K. (2017). Light-emitting diodes: whether an efficient source of light for indoor plants?. Environ Sci. Pollut. Res., 24, 24743–24752. https://doi.org/10.1007/s11356-017-0333-3 DOI: https://doi.org/10.1007/s11356-017-0333-3
  23. Sumanta, N., Haque, C., Nishika, J., Suprakash R. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci., 4(9), 63–69. https://doi.org/10.1055/s-0033-1340072 DOI: https://doi.org/10.1055/s-0033-1340072
  24. Tan, C., Wong, N. (2017). Growth light provision for indoor greenery: a case study. Energy Build., 144, 207–217. https://doi.org/10.1016/j.enbuild.2017.03.044 DOI: https://doi.org/10.1016/j.enbuild.2017.03.044
  25. Tennessen, C., Cimprich, B. (1995). Views to nature: effects on attention. J. Environ. Psychol., 15, 77–85. https://doi.org/10.1016/0272-4944(95)90016-0 DOI: https://doi.org/10.1016/0272-4944(95)90016-0
  26. Valladares, F., Laanisto, L., Niinemets, Ü., Miguel, A., Zavala, D. (2016). Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecol. Divers., 9(3), 237–251. https://doi.org/10.1080/17550874.2016.1210262 DOI: https://doi.org/10.1080/17550874.2016.1210262
  27. Vänninen, I., Pinto, D., Nissinen, A., Johansen, N., Shipp, L. (2010). In the light of new greenhouse technologies: 1. Plant-mediates effects of artificial lighting on arthropods and tritrophic interactions. Ann. Appl. Biol., 157, 393–414. https://doi.org/10.1111/j.1744-7348.2010.00438.x DOI: https://doi.org/10.1111/j.1744-7348.2010.00438.x
  28. Walters, M., Reich, P. (1999). Low-light carbon balance and shade tolerance in the seedlings of woody plants: Do winter deciduous and broad-leaved evergreen species differ? New Phytol., 143, 143–154. https://doi.org/10.1046/J.1469-8137.1999.00425.X DOI: https://doi.org/10.1046/j.1469-8137.1999.00425.x
  29. Yeh, D., Wang, H. (2000). Effects of irradiance on growth, net photosynthesis and indoor performance of the shade-adapted plant, maidenhair fern. J. Hortic. Sci. Biotechnol., 75, 293–298. https://doi.org/10.1080/14620316.2000.11511240 DOI: https://doi.org/10.1080/14620316.2000.11511240
  30. Zaika, V., Bondarenko T. (2018). The content of chlorophyll a and chlorophyll b in leaves of undergrowth species in hornbeam-oak forest stands of the forest-steppe zone in Western Ukraine. For. Res. Pap., 79(1), 23–28. https://doi.org/10.2478/frp-2018-0003 DOI: https://doi.org/10.2478/frp-2018-0003
  31. Zheng, L., van Labeke, M. (2017). Long-term effects of red- and bluelight emiting dides on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Front. Plant Sci., 8, 917, 1–12. https://doi.org/10.3389/fpls.2017.00917 DOI: https://doi.org/10.3389/fpls.2017.00917
  32. Zielinska-Dabkowska, K., Hartmann, J., Sigillo, C. (2019). LED light sources and their complex set-up for visually and biologically effective illumination for ornamental indoor plants. Sustainability, 11, 2642. https://doi.org/10.3390/su11092642 DOI: https://doi.org/10.3390/su11092642

Downloads

Download data is not yet available.

Similar Articles

<< < 85 86 87 88 89 90 91 92 93 94 > >> 

You may also start an advanced similarity search for this article.