Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 1 (2023)

Articles

The fatty acid composition, phytochemicals and antioxidant potential of wild edible Smilax excelsa L. shoots.

DOI: https://doi.org/10.24326/asphc.2023.4566
Submitted: February 14, 2022
Published: 2023-02-24

Abstract

The present study examines the fatty acid composition, phytochemicals content and antioxidant potential of Smilax excelsa L. shoots, which grows spontaneously and is consumed as food in rural areas of Düzce (Türkiye) province, was investigated. DPPH, ABTS and OH radical scavenging tests were utilized to put forth the antiradical properties of the extracts of this plant. In addition, the metal chelating potential of this plant was also evaluated. The higher the inhibition % value calculated in these tests, the higher the antioxidant activity was considered and the results were evaluated. The average ABTS radical cleaning test results of Smilax excelsa extracts prepared in different concentrations of methanol, ethanol and pure water were found to be 98.14%, 98.16%, 90.20%, respectively. The average DPPH radical cleaning test results of the extracts of this plant prepared in different concentrations of methanol, ethanol and pure water were determined as 87.48%, 76%, 46.53%, respectively. The OH radical cleaning test results of methanol, ethanol and pure water extracts of the Smilax excelsa were determined as 54.79%, 72.54%, none, respectively. In addition, the metal chelation test results of methanol, ethanol and pure water extracts of this plant were determined as 87.26%, 89.36%, 53.70%. The highest protein (85.91 mg BSA/g), proanthocyanidin (55.39 mg CE/g) and phenolic (4957.57 μg GAE/g) content of Smilax excelsa pure water extract was determined. It has been determined that gallic acid (117.33 μg/g), vanillic acid (33.89 μg/g), caffeic acid (4.55 μg/g), ferulic acid (93.78 μg/g), rosmarinic acid (0.33 μg/g) and hydrocynamic acid (0.33 μg/g) are found in different proportions in the Smilax excelsa. It has been stated that Smilax excelsa is an important source of palmitic acid (20.52%), stearic acid (4.95%), oleic acid (4.74%), linoleic acid (20.99%), γ-linolenic acid (2.26%), alpha-linolenic acid (34.29%) and docosahexaenoic acid (2.79%). It has been found that this plant has a low content of fat-soluble vitamins and phytosterols, with the exception of β-sitosterol (6.43μg/g).

References

  1. Amaeze, O.U., Ayoola, G.A., Sofidiya, M.O., Adepoju-Bello, A.A., Adegoke, A.O., Coker, H.A. (2011). Evaluation of antioxidant activity of Tetracarpidium conophorum (Müll. Arg) Hutch & Dalziel leaves. Oxid. Med. Cell Longev., 976701. https://doi.org/10.1155/2011/976701 DOI: https://doi.org/10.1155/2011/976701
  2. Ao, C., Higa, T., Khanh, T.D., Upadhyay, A., Tawata, S. (2011). Antioxidant phenolic compounds from Smilax sebeana Miq. LWT – Food Sci. Technol., 44, 1681–1686. https://doi.org/10.1016/j.lwt.2011.02.001 DOI: https://doi.org/10.1016/j.lwt.2011.02.001
  3. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol., 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008 -5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
  4. Brito, C., Bertotti, T., Primitivo, M.J., Neves, M., Pires, C.L., Cruz, P.F., Martins, P.A.T., Rodrigues, A.C., Moreno, M.J., Brito, R.M.M., Campos, M.J., Vaz, D.C., Pessoa, M.F., Lidon, F., Reboredo, F., Ribeiro, V.S. (2021). Corema album spp: edible wild crowberries with a high content in minerals and organic acids. Food Chem., 345, 128732. https://doi.org/10.1016/j.foodchem.2020.128732 DOI: https://doi.org/10.1016/j.foodchem.2020.128732
  5. Christie, W.W. (1990). Gas chromatography and lipids. The Oily Pres, Scotland.
  6. Christie, W.W. (1992). Preparation of fatty acid methyl esters. Inform, 3, 1031–1034.
  7. Decker, E.A., Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem., 38, 674–677. https://doi.org/10.1021/jf00093a019 DOI: https://doi.org/10.1021/jf00093a019
  8. Demir, E., Sürmen, B., Özer, H., Kutbay, H.G. (2017). Ethnobotanical characteristics of naturally growing plants in Salıpazarı and its environments (Samsun/Turkey). Karadeniz Fen Bilim. Derg., 7(2), 68–78. https://doi.org/10.31466/kfbd.321940 DOI: https://doi.org/10.31466/kfbd.321940
  9. Demir, E., Turfan, N., Özer, H., Üstün, N.Ş., Pekşen, A. (2020). Nutrient and bioactive substance contents of edible plants grown naturally in Salıpazarı (Samsun). Acta Sci. Pol. Hortorum Cultus, 19(1), 151–160. https://doi.org/10.24326/asphc.2020.1.14 DOI: https://doi.org/10.24326/asphc.2020.1.14
  10. Efe, E., Yalçın, E., Çavuşoğlu, K. (2019). Antimutagenic and multi-biological activities of Smilax excelsa L. fruit extract. Cumhuriyet Sci. J., 40–42, 440–446. https://doi.org/10.17776/csj.513469 DOI: https://doi.org/10.17776/csj.513469
  11. Geraci, A., Amato, F., Di Noto, G., Bazan, G., Schicchi, R. (2018). The wild taxa utilized as vegetables in Sicily (Italy): a traditional component of the Mediterranean diet. J. Ethnobiol. Ethnomed., 14(1), 14. https://doi.org/10.1186/s13002-018-0215-x DOI: https://doi.org/10.1186/s13002-018-0215-x
  12. Gok, O., Beyaz, S., Erman, F., Aslan, A. (2021). Does persimmon leaf have a protective effect against oxidative damage caused by chromium in Saccharomyces cerevisiae? Prog. Nutr., 23(2), e2021213. https://doi.org/10.23751/pn.v23i2.11409
  13. Halliwell, B., Gutteridge, J.M., Aruoma, O.I. (1987). The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem., 165(1), 215–219. https://doi.org/10.1016/0003-2697(87)90222-3 DOI: https://doi.org/10.1016/0003-2697(87)90222-3
  14. Hara, A., Radin, N.S, (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem., 90(1), 420–426. https://doi.org/10.1016/0003-2697(78)90046-5 DOI: https://doi.org/10.1016/0003-2697(78)90046-5
  15. Harumi Iyda, J., Fernandes, Â., Calhelha, R.C., Alves, M.J., Ferreira, F.D., Barros, L., Amaral, J.S., Ferreira, I.C.F.R. (2019). Nutritional composition and bioactivity of Umbilicus rupestris (Salisb.) Dandy: an underexploited edible wild plant. Food Chem., 295, 341–349. https://doi.org/10.1016/j.foodchem.2019.05.139 DOI: https://doi.org/10.1016/j.foodchem.2019.05.139
  16. Jia, X.Y., Zhang, Q.A., Zhang, Z.Q., Wang, Y., Yuan, J.F., Wang, H.Y., Zhao, D. (2011). Hepatoprotective effects of almond oil against carbon tetrachloride induced liver injury in rats. Food Chem., 125, 673–678. https://doi.org/10.1016/j.foodchem.2010.09.062 DOI: https://doi.org/10.1016/j.foodchem.2010.09.062
  17. Jiang, J., Xu, Q. (2003). Immunomodulatory activity of the aqueous extract from rhizome of Smilax glabra in the later phase of adjuvant-induced arthritis in rats. J. Ethnopharmacol., 85(1), 53–59. https://doi.org/10.1016/s0378-8741(02)00340-9 DOI: https://doi.org/10.1016/S0378-8741(02)00340-9
  18. Keser, S., Demir, E., Yilmaz, Ö. (2014). Phytochemicals and antioxidant activity of the almond kernel (Prunus dulcis Mill.) from Turkey. J. Chem. Soc. Pak., 36, 534–541.
  19. Khaligh, P., Salehi, P., Farimani, M.M., Ali‑Asgari, S., Esmaeili, M.A., Ebrahimi S.N. (2016). Bioactive compounds from Smilax excelsa L. J. Iran Chem. Soc., 13, 1055–1059. https://doi.org/10.1007/s13738-016-0819-9 DOI: https://doi.org/10.1007/s13738-016-0819-9
  20. Kongkachuichai, R., Charoensiri, R., Yakoh, K., Kringkasemsee, A., Insung, P. (2015). Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand. Food Chem., 173, 838–846. https://doi.org/10.1016/j.foodchem.2014.10.123 DOI: https://doi.org/10.1016/j.foodchem.2014.10.123
  21. Lee, S.E., Ju, E.M., Kim, J.H. (2001). Free radical scavenging and antioxidant enzyme fortifying activities of extracts from Smilax china root. Exp. Mol. Med., 33(4), 263–268. https://doi.org/10.1038/emm.2001.43 DOI: https://doi.org/10.1038/emm.2001.43
  22. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
  23. López-Cervantes, J., Sánchez-Machado, D.I., Ríos-Vázquez, N.J. (2006). High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. J. Chromatogr. A, 1105(1–2), 135–139. https://doi.org/10.1016/j.chroma.2005.08.010 DOI: https://doi.org/10.1016/j.chroma.2005.08.010
  24. Miser-Salihoglu, E., Akaydın, G., Calıskan-Can, E., Yardım-Akaydın, S. (2010). Evaluation of antioxidant activity of various herbal folk evaluation medicine. Fabad J. Pharm. Sci, 35, 59–67.
  25. Mzoughi, Z., Chahdoura, H., Chakroun, Y., Cámara, M., Fernández-Ruiz, V., Morales, P., Mosbah, H., Flamini, G., Snoussi, M., Majdoub, H. (2019). Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): nutritional, phytochemical composition and biological activities. Food Res. Int., 119, 612–621. https://doi.org/10.1016/j.foodres.2018.10.039 DOI: https://doi.org/10.1016/j.foodres.2018.10.039
  26. Ozsoy, N., Can, A., Yanardag, R., Akev, N. (2008). Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem., 110, 571–583. https://doi.org/10.1016/j.foodchem.2008.02.037 DOI: https://doi.org/10.1016/j.foodchem.2008.02.037
  27. Özbucak, T.B., Akçin Ö.E., Yalçin S. (2007). Nutrition content of the some wild edible plants in central Black Sea region of Turkey. Int. J. Nat. Engineer. Sci., 1,11–13.
  28. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
  29. Salas-Coronado, R., Hernández-Carlos, B., Llaguno-Guilberto, J., Santos-Sánchez, N.F. (2017). Phenolic compounds in genus Smilax (Sarsaparilla). In: Phenolic compounds – natural sources, importance and applications, Soto-Hernández, M., Palma-Tenango, M., del García-Mateos, R. (eds). IntechOpen. https://doi.org/10.5772/66896 DOI: https://doi.org/10.5772/66896
  30. Sánchez-Machado, D.I., López-Hernández, J., Paseiro-Losada, P. (2002). High-performance liquid chromatographic determination of alpha-tocopherol in macroalgae. J. Chromatogr. A, 976(1–2), 277–284. https://doi.org/10.1016/s0021-9673(02)00934-2 DOI: https://doi.org/10.1016/S0021-9673(02)00934-2
  31. Slinkard, K., Singleton, V.L. (1977). Total phenol analysis-automation and comparison with manual methods. Am. J. Enol. Vitic., 28, 49–55. https://doi.org/10.5344/ajev.1974.28.1.49 DOI: https://doi.org/10.5344/ajev.1974.28.1.49
  32. Song, J., Huang, H., Hao, Y., Song, S., Zhang, Y., Su, W., Liu, H. (2020). Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Sci. Rep., 10(1), 2796. https://doi.org/10.1038/s41598-020-59574-3 DOI: https://doi.org/10.1038/s41598-020-59574-3
  33. Zu, Y., Li, C., Fu, Y., Zhao, C. (2006). Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J. Pharm. Biomed. Anal., 41(3), 714–719. https://doi.org/10.1016/j.jpba.2005.04.052 DOI: https://doi.org/10.1016/j.jpba.2005.04.052

Downloads

Download data is not yet available.

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.