Skip to main navigation menu Skip to main content Skip to site footer

Vol. 17 No. 6 (2018)

Articles

THE INFLUENCE OF BIOSTIMULANTS ON THE MICROELEMENT CONTENT OF TUBERS IN SELECTED POTATO CULTIVARS

DOI: https://doi.org/10.24326/asphc.2018.6.4
Submitted: December 20, 2018
Published: 2018-12-20

Abstract

The aim of this study was to determine the influence of biostimulants on the content of selected microelements in the skin and flesh of potato tubers. Five potato cultivars were grown: Irga, Satina (with cream- and yellow-colored flesh), Valfi, Blaue St. Galler (with purple-colored flesh) and Highland Burgundy Red - HB Red (with red-colored flesh). Potatoes were treated with the following biostimulants: Asahi SL, Bio-Algeen S 90, Kelpak SL and Trifender WP. Control plants were not treated with biostimulants. Samples of potato tubers were analyzed immediately after the harvest and after 5 months of storage (4°C). The highest content of micronutrients in the skin and flesh of potato tubers was determined at harvest in the driest 2015 year. In all years of the experiment, micronutrient concentrations were lower in the flesh than in the skin of potato tubers, and the greatest differences were noted in the content of Fe. The concentrations of Zn, Mn and Fe in the skin and flesh of potato tubers increased as a response to the Bio-Algeen S 90 biostimulant, and the content of Fe was also higher in the skin of potatoes treated with Kelpak SL. In general, the skin and flesh of potatoes cvs. Valfi, Blaue St. Galler and HB Red were more abundant in microelements than cvs. Irga and Satina potatoes. Content of Zn and Mn increased and the content of Cu and Fe decreased (excluding the first year of the study) in the skin and flesh of stored potatoes. The skin and flesh of stored potato tubers treated with biostimulants were characterized by Mn concentrations that were higher or similar to those recorded in the control treatment (excluding the skin of potatoes treated with Bio-Algeen S 90) and a smaller decrease in Cu content.

References

  1. Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M. (2012). Microalgae and wastewater treatment. Saudi J. Biol. Sci., 19(3), 257–275.
  2. Andre, C.M., Ghislain, M., Bertin, P., Oufir, M., del Rosario Herrera, M., Hoffmann, L., Hausman, J.F., Larondelle, Y., Evers, D. (2007). Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem., 55, 366–378.
  3. Arvin, M.J., Habib, A., Donelly, D.J. (2005). Effect of calcium concentration in medium on microtuberization of potato (Solanum tuberosum L.). Iran. J. Biotech., 3(3), 152–156.
  4. Baranowska, A., Zarzecka, K., Gugała, M., Mystkowska, I. (2017). Contents of zinc, copper and manganese in potato tubers depending on the ways of application of the soil fertilizer UGmax. J. Ecol. Eng., 18(1), 99–106.
  5. Bethke, P.C., Jansky, S.H. (2008). The effects of boiling and leaching on the content of potassium and other minerals in potatoes. J. Food Sci., 75(5), 80–85.
  6. Cakmak, I.M. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol., 146, 185–205.
  7. Craigie, J.S. (2011). Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol., 23, 371–393.
  8. Dzwonkowski, W., Szczepaniak, I., Zdziarska, T., Mieczkowski, M. (2015). Demand for potatoes. Rynek Ziemn., 42, 19–26 [in Polish].
  9. Evans, I., Solberg, E., Huber, D.M. (2007). Copper and plant disease. In: Datnoff, L.E., Elmer, W.H., Huber, D.M. (eds.). Mineral nutrition and plant disease. APS Press, St. Paul, 177–188.
  10. Ezekiel, R., Singh, N., Sharma, S., Kaur, A. (2013). Beneficial phytochemicals in potato – a review. Food Res. Int., 50, 487–496.
  11. Filipek, T., Skowrońska, M. (2013). Current dominant causes and effects of acidification of soils under agricultural use in Poland. Acta Agrophys., 20(2), 283–294 [in Polish].
  12. Friedman, M., Levin, C.E. (2009). Analysis and biological activities of potato glycoalkaloids, calystegine alkaloids, phenolic compounds, and anthocyanins. In: Advances in potato chemistry and technology, Singh, J., Kaur, L. (eds.). Academic Press, Burlington, pp. 127–162.
  13. Gachango, E., Hanson, L.E., Rojas, A., Hao, J.J., Kirk, W.W. (2012). Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Dis., 96, 1767–1774.
  14. García-Bañuelos, M.L., Sida-Arreola, J.P., Sánchez, E. (2014). Biofortification – promising approach to increasing the content of iron and zinc in staple food crops. J. Elementol., 19(3), 865–888.
  15. González, A., Castro, J., Vera, J., Moenne, A. (2013). Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J. Plant Growth Regul., 32, 443–448.
  16. Griffiths, A.M., Cook, D.M., Eggett, D.L., Christensen, M.J. (2012). A retail market study of organic and conventional potatoes (Solanum tuberosum): mineral content and nutritional implications. Int. J. Food Sci. Nutr., 63(4), 393–401.
  17. Gugała, M., Zarzecka, K., Sikorska, A., Dołęga, H., Kapela, K., Krasnodębska, E. (2016). The impact of methods of care on the content and collection of zinc and copper with the yield of potato tubers. J. Ecol. Eng., 17(4), 289–294.
  18. GUS 2016. Statistical Yearbook of Agriculture.
  19. Hammerschmidt, R., Nicholson, R.L. (2000). A survey of plant defense responses to pathogens. In: Agrawal, A.A., Tuzun, S., Bent, E. (eds.), Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. APS Press, St. Paul, pp. 55–71.
  20. Hamouz, K., Lachman, J., Hejtmánková, K., Pazderů, K., Čížek, M., Dvořák, P. (2010). Effect of natural and growing conditions on the contentof phenolics in potatoes with different flesh colour. Plant Soil Environ., 56(8), 368–374.
  21. Haynes, K.G., Yencho, G.C., Clough, M.E., Henninger, M.R., Sterrett, S.B. (2012). Genetic variation for potato tuber micronutrient content and implications for biofortification of potatoes to reduce micronutrient malnutrition. Am. J. Potato Res., 89, 192–198.
  22. Kaniuczak, J., Hajduk, E., Właśniewski, S. (2009). The influence of liming and mineral fertilization on manganese and zinc content in potato tubers and green mass of pasture sunflower cultivated in loessial soil. Zesz. Prob. Post. Nauk Roln., 541, 199–206 [in Polish].
  23. Khan, W., Rayorath, U.P., Subramanian, S., Jithesh, M.N., Rayorath, P., Hodges, D.M., Critchley, A.T., Craigie, J.S., Norrie, J., Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul., 28, 386–399.
  24. Leszczyński, W. (2012). Nutrition value of potato and potato products (Review of literature). Biul. IHAR-PIB, 266, 5–20 [in Polish].
  25. Lombardo, S., Pandino, G., Mauromicale, G. (2014). The mineral profile in organically and conventionally grown “early” crop potato tubers. Sci. Hortic., 167, 169–173.
  26. Love, S.L., Pavek, J.J. (2008). Positioning the potato as a primary food source of vitamin C. Am. J. Pot. Res., 85, 277–285.
  27. Luis, G., Rubio, C., Gonzalez-Weller, D., Gutierrez, A.J., Revert, C., Hardisson, A. (2011). Comparative study of the mineral composition of several varieties of potatoes (Solanum tuberosum L.) from different countries cultivated in Canary Islands (Spain). Int. J. Food Sci. Tech., 46(4), 774–780.
  28. Majkowska-Gadomska, J., Wierzbicka, B. (2013). Effect of the biostimulator Asahi SL on the mineral content of eggplants (Solanum melongenum L.) grown in an unheated plastic tunnel. J. Elementol., 18(2), 269–276.
  29. Manzelli, M., Romagnoli, S., Ghiselli, L., Benedettelli, S., Palchetti, E., Andrenelli, L., Vecchio, V. (2010). Typicity in potato: Characterization of geographic origin. Ital. J. Agron./Riv. Agron., 5, 61–67.
  30. Medyńska, A., Kabała, C., Chodak, T., Jezierski, P. (2009). Concentration of copper, zinc lead and cadmium in plants cultivated in the surroundings of Żelazny Most copper ore tailings impoundment. J. Elementol., 14(4), 729–736.
  31. Millaleo, R., Reyes-Diaz, M., Ivanov, A.G., Mora, M.L., Alberdi, M. (2010). Manganese as an essential and toxic element for plants: transport, accumulation and resistance mechanisms. J. Soil Sci., 10(4), 470–481.
  32. Murnice, I., Karklina, D., Galoburda, R., Santare, D., Skrabule, I., Costa, H.S. (2011). Nutritional composition of freshly harvested and stored Latvian potato varieties depending on traditional cooking methods. J. Food Compos. Anal., 24, 699–710.
  33. Petryk, A., Bedla, D. (2010). Evaluation of heavy metals (Pb, Zn, Cr, Fe) content in potatoes tuber and in soil in the Trzebinia municipality. Inż. Ekol., 22, 18–24 (in Polish).
  34. Polish National List of Agricultural Plant Varieties (2017). COBORU, Słupia Wielka.
  35. PN-R-04017:1992. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnej miedzi w glebach mineralnych. PKN, Warszawa.
  36. PN-R-04016:1992. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego cynku w glebach mineralnych. PKN, Warszawa.
  37. PN-R-04019:1993. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego manganu w glebach mineralnych. PKN, Warszawa.
  38. PN-R-04023:1996. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego fosforu w glebach mineralnych. PKN, Warszawa.
  39. PN-R-04020:1994/Az1:2004. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego magnezu w glebach mineralnych. PKN, Warszawa.
  40. PN-R-04022:1996/Az1:2002. Analiza chemiczno-rolnicza gleby. Oznaczanie zawartości przyswajalnego fosforu w glebach mineralnych. PKN, Warszawa.
  41. Sawicka, B., Barbaś, P., Skiba, D. (2016). Fluctuations of sodium, copper, zinc, iron and manganese in potato tubers in the organic and integrated production system. J. Elementol., 21(2), 539–547.
  42. Sawicka, B., Noaema, A.H., Hameed, T.S., Skiba, D. (2016). Genotype and environmental variability of chemical elements in potato tubers. Review article. Acta Sci. Pol. Agricultura, 15(3), 79–91.
  43. Sharma, H.S., Fleming, C., Selby, C., Rao, J.R., Martin, T. (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol., 26, 465–490.
  44. Sławiak, M., Łojkowska, E., Van der Wolf, J.M. (2009). First report of bacterial soft rot on potato caused by Dickeya sp. (syn. Erwinia chrysanthemi) in Poland. Plant Pathol., 58(4), 794.
  45. Soetan, K.O., Olaiya, C.O., Oyewole, O.E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. African J. Food Sci., 4(5), 200–222.
  46. Šreck, P., Hejcman, M., Kunzová, E. (2012). Effect of longterm cattle slurry and mineral N, P and K application on concentrations of N, P, K, Ca, Mg, As, Cd, Cr, Cu, Mn, Ni, Pb and Zn in peeled potato tubers and peels. Plant Soil Environ., 58(4), 167–173.
  47. Stangoulis, J.C.R., Graham, R.D. (2007). Boron and plant disease In: Datnoff, L.E., Elmer, W.H., Huber, D.M., editors. Mineral nutrition and plant disease. APS Press, St. Paul (MN), pp. 207–214.
  48. Stushnoff, C., Holm, D., Thompson, M., Jiang, W., Thompson, H., Joyce, N., Wilson, P. (2008). Antioxidant properties of cultivars and selections from the Colorado potato breeding program. Am. J. Potato Res., 85, 267–276.
  49. Subramanian, N.K., White, P.J., Broadley, M.R., Ramsay, G. (2011). The three-dimensional distribution of minerals in potato tubers. Ann. Botany, 107(4), 681–691.
  50. Subramanian, R., Gayathri, S., Rathnavel, C., Raj, V. (2012). Analysis of mineral and heavy metals in some medicinal plants collected from local market. Asian Pac. J. Trop. Biomed., 2, 74–78.
  51. Tamasi, G., Cambi, M., Gaggelli, N., Autino, A., Cresti, M., Cini, R. (2015). The content of selected minerals and vitamin C for potatoes (Solanum tuberosum L.) from the high Tiber Valley area, southeast Tuscany. J. Food Compos. Anal., 41, 157–164 .
  52. Wierzbicka, A., Trawczyński, C. (2011). Effect of irrigation and soil microorganisms on the macro and micronutrient contents in organic potato tubers. Fragm. Agron., 28(4), 139–148 [in Polish].
  53. Wierzbowska, J., Cwalina-Ambroziak, B., Bowszys, T., Głosek-Sobieraj, M., Mackiewicz-Walec, E. (2015). Content of microelements in tubers of potato treated with biostimulators Pol. J. Nat. Sci., 30(3), 225–234.
  54. Wierzbowska, J., Cwalina-Ambroziak, B., Głosek-Sobieraj, M., Sienkiewicz, S. (2016). Content of minerals in tubers of potato plants treated with bioregulators. Rom. Agric. Res., 33, 291–298.
  55. Wiśniowska-Kielian, B., Klima, K. (2007). Comparison of microelement content in winter wheat grain from organic and conventional farms. J. Res. Appl. Agric. Engin., 52(4), 100–103 [in Polish].
  56. Zarzecka, K., Gugała, M., Baranowska, A., Dołęga, H., Sikorska, A. (2016). Concentrations of copper, zinc and manganese in potato tubers under the influence of herbicides. J. Elementol., 21(1), 259–267.
  57. Zgórska, K., Grudzińska, M. (2012). Zmiany wybranych cech jakości bulw ziemniaka w czasie przechowywania. Acta Agrophys., 19(1), 203–214.
  58. Żołnowski, A.C. (2013). Studies on the variability of yield and quality of table potato (Solanum tuberosum L.) in conditions of diversified mineral fertilization. Hearing and Monographs. UWM Olsztyn, 191, pp. 259.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 76 77 78 79 80 81 82 > >> 

You may also start an advanced similarity search for this article.