Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 6 (2023)

Articles

Establishing in vitro cultures of Pennisetum ‘Vertigo®’ and its shoot multiplication under different LED light quality

DOI: https://doi.org/10.24326/asphc.2023.5164
Submitted: April 26, 2023
Published: 2023-12-22

Abstract

This study provides a method for ornamental grass Pennisetum ‘Vertigo®’ in vitro culture initiation and shoot multiplication under different LED light qualities. The culture was initiated from field-cultivated plants collected from the 1st to 30th October at weekly intervals. Later dates of collecting shoot tips increased the effectiveness of surface disinfection (from 46% on the first date to 93% on the fifth one) and the percentage of regenerating explants (from 34% on the first date to 93% on the fifth one). Disinfection and regeneration results were better for the apical buds than the axillary buds. Soaking explants in nystatin before surface disinfection or using a medium with an antibiotic increased the effectiveness of disinfection (even by 27–46%, depending on the combination) and did not inhibit the regeneration of explants. At the shoot propagation stage, the multiplication rate was twice as high for the shoots originating from the apical buds (5.5 per explant) than for those originating from the axillary buds. The addition of yellow light to the red and blue light (RBY) spectrum increased the multiplication rate, and the addition of green light to the red and blue (RBG) spectrum increased the fresh weight of the shoots. The highest content of chlorophyll a was found in the shoots propagated under RB, as well as RBY and RBG light.

References

  1. Abdalla, N., El-Ramady, H. Seliem, M.K. El-Mahrouk, M.E., Taha, N., Bayoumi, Y., Shalaby, T.A., Dobránszki, J. (2022). An academic and technical overview on plant micropropagation challenges. Horticulturae, 8, 677. https://doi.org/10.3390/horticulturae8080677 DOI: https://doi.org/10.3390/horticulturae8080677
  2. Barampuram, S., Allen, G., Krasnyanski, S. (2014). Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell Tissue Organ Cult., 118, 179–185. https://doi.org/10.1007/s11240-014-0472-x DOI: https://doi.org/10.1007/s11240-014-0472-x
  3. Bello-Bello, J.J., Perez-Sato, J.A., Cruz-Cruz, C.A., Martínez-Estrada, E. (2017). Light-emitting diodes: progress in plant micropropagation. InTech, 6(1), 93–103. DOI: https://doi.org/10.5772/67913
  4. Blinstrubienė, A., Jančauskienė, I., Burbulis, N. (2021). In vitro regeneration of Miscanthus × giganteus through indirect organogenesis: effect of explant type and growth regulators. Plants, 10(12), 2799. https://doi.org/10.3390/plants10122799 DOI: https://doi.org/10.3390/plants10122799
  5. Cavallaro, V., Pellegrino, A., Muleo, R., Forgione, I. (2022). Light and plant growth regulators on in vitro proliferation. Plants, 11(7), 844. https://doi.org/10.3390/plants11070844 DOI: https://doi.org/10.3390/plants11070844
  6. Contreras, R.N., Owen, J., Hanna, W., Schwartz, B. (2013). Evaluation of seven complex pennisetum hybrids for container and landscape performance in the Pacific Northwestern United States. HortTechnology, 23(4), 525–528.
  7. https://doi.org/10.21273/HORTTECH.23.4.525 DOI: https://doi.org/10.21273/HORTTECH.23.4.525
  8. Dun, E.A., Ferguson, B.J., Beveridge, C.A. (2006). Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol., 142(3), 812–819. https://doi.org/10.1104/pp.106.086868 DOI: https://doi.org/10.1104/pp.106.086868
  9. Gaikwad, A.R., Dobariya, K.L. (2006). The role of genotype, explant and culture medium on callus induction in pearl millet (Pennisetum glaucum (L.) R. BR.). J. Soils Crop., 16(1), 76–83.
  10. Guo, Y., Liu, L., Yue, Y., Fan, X., Teng, W., Zhang, H., Gao, K., Guan, J., Chang, Z., Teng, K. (2022). Development of SSR markers based on transcriptome sequencing and verification of their conservation across species of ornamental Pennisetum Rich. (Poaceae). Agronomy, 12(7), 1683. https://doi.org/10.3390/agronomy12071683 DOI: https://doi.org/10.3390/agronomy12071683
  11. Hanna, W.W., Braman, S.K., Schwartz, B.M. (2011). Registration of Tift 8 trispecific ornamental Pennisetum. J. Plant. Regist., 5, 295–298. https://doi.org/10.3198/jpr2010.07.0435crc DOI: https://doi.org/10.3198/jpr2010.07.0435crc
  12. Hanna, W.W., Braman, S.K., Schwartz, B.M. (2016). ‘Tift 15’, ‘Tift 26’, ‘Tift 114’, ‘Tift 118’, and ‘Tift 125’ ornamental pennisetums. HortScience 51(4), 444–447. https://doi.org/10.21273/HORTSCI.51.4.444 DOI: https://doi.org/10.21273/HORTSCI.51.4.444
  13. Hanna, W.W., Schwartz, B.M. (2020). ‘Tift H18’and ‘Tift PA5’ ornamental Pennisetum alopecuroides. HortScience, 55(6), 974–976. https://doi.org/10.21273/HORTSCI15002-20 DOI: https://doi.org/10.21273/HORTSCI15002-20
  14. https://www.provenwinners.com/plants/pennisetum/graceful-grasses-vertigo-purple-fountain-grass-pennisetum-purpureum
  15. Kapczyńska, A., Kowalska, I., Prokopiuk, B., Pawłowska, B. (2020). Rooting media and biostimulator Goteo treatment effect the adventitious root formation of Pennisetum ‘Vertigo’ cuttings and the quality of the final product. Agriculture, 10(11), 570. https://doi.org/10.3390/agriculture10110570 DOI: https://doi.org/10.3390/agriculture10110570
  16. Kebrom, T.H. (2017). A growing stem inhibits bud outgrowth – the overlooked theory of apical dominance. Front. Plant Sci., 8, 1874. https://doi.org/10.3389/fpls.2017.01874 DOI: https://doi.org/10.3389/fpls.2017.01874
  17. Khan, R.T., Ilyas, R., Kamal, N., Saleem, S., Bibi, S., Khan, M.R., Younas, M.T., Matee-ur-Rehman, H., Ullah, S., Mahmood, B. (2022). Effects of different hormonal concentrations on in vitro regeneration and multiplication of pearl millet (Pennisetum glaucum L.). J. Appl. Res. Plant Sci., 3(2), 311–316. https://doi.org/10.38211/joarps.2022.3.2.38. DOI: https://doi.org/10.38211/joarps.2022.3.2.38
  18. Kopeć, P., Płażek, A. (2023). An attempt to restore the fertility of Miscanthus × giganteus. Agronomy, 13(2), 323. https://doi.org/10.3390/agronomy13020323 DOI: https://doi.org/10.3390/agronomy13020323
  19. Lal, N. (2021). Micropropagated plants as alternative planting material to sugarcane setts. Indian J. Biol. 8(1), 27–30. http://dx.doi.org/ 10.21088/ijb.2394.1391.8121.4
  20. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assayswith tabacco tissue cultures. Physiol. Plant.,15, 473–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Müller, D., Waldie, T., Miyawaki, K., To, J.P., Melnyk, C.W., Kieber, J.J., Kakimoto, T., Leyser, O. (2015). Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J., 82(5), 874–886. https://doi.org/10.1111/tpj.12862 DOI: https://doi.org/10.1111/tpj.12862
  22. Nuzhyna, N., Kunakh, V., Poronnik, O., Parnikoza, I. (2021). Preservation of features of anatomical polymorphism of Deschampsia antarctica É. Desv. (Poaceae) during in vitro clonal reproduction. Acta Agrobot., 74(1). https://doi.org/10.5586/aa.7416 DOI: https://doi.org/10.5586/aa.7416
  23. Ojo, O.A., Ojo, A.B., Morayo, B., Iyobhebhe, M., Elebiyo, T.C., Evbuomwan, I.O., Michael, T., Ajiboye, B.O., Oyinloye, B.E., Oloyede, O.I. (2022). Phytochemical properties and pharmacological activities of the genus Pennisetum: a review. Sci. African, 16, e01132. https://doi.org/10.1016/j.sciaf.2022.e01132 DOI: https://doi.org/10.1016/j.sciaf.2022.e01132
  24. Rajput, R.D., Patil, R.P. (2017). The comparative study on spectrophotometric analysis of chlorophyll and carotenoids pigments from non-leguminous fodder crops. Int. J. Innov. Sci. Eng. Technol, 4(7), 140–148.
  25. Reza, M.S., Afroze, S., Bakar, M.S., Saidur, R., Aslfattahi, N., Taweekun, J., Azad, A.K. (2020). Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature. Biochar, 2, 239–251. https://doi.org/10.1007/s42773-020-00048-0 DOI: https://doi.org/10.1007/s42773-020-00048-0
  26. Sumanta, N., Haque, Ch.I., Nishika, J., Suprakash, R. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci., 4(9), 63–69.
  27. Thomas, R.G., Hay, M.J.M. (2009). Axillary bud outgrowth potential is determined by parent apical bud activity. J. Exp. Bot., 60(15), 4275–4285. https://doi.org/10.1093/jxb/erp258 DOI: https://doi.org/10.1093/jxb/erp258
  28. Tiécoura, K., Ledoux, L., Dinant, M. (2003). Plant regeneration through tissue culture of pear millet (Pennisetum glaucum (L) R.). Agron. Afr., 15(3), 105–121. https://doi.org/10.4314/aga.v15i3.1634 DOI: https://doi.org/10.4314/aga.v15i3.1634
  29. Toderich, K., Shuyskaya, E., Rakhmankulova, Z., Bukarev, R., Khujanazarov, T., Zhapaev, R., Ismail, S., Gupta, S.K., Yamanaka, N., Boboev, F. (2018). Threshold tolerance of new genotypes of Pennisetum glaucum (L.) R. Br. to salinity and drought. Agronomy, 8(10), 230. https://doi.org/10.3390/agronomy8100230 DOI: https://doi.org/10.3390/agronomy8100230
  30. Woods, S.R., Fehmi, J.S., Backer, D.M. (2012). An assessment of revegetation treatments following removal of invasive Pennisetum ciliare (buffelgrass). J. Arid Environ., 87, 168–175. https://doi.org/10.1016/j.jaridenv.2012.06.009 DOI: https://doi.org/10.1016/j.jaridenv.2012.06.009
  31. Yue, Y., Fan, X., Hu, Y., Han, C., Li, H., Teng, W., Zhang, H., Teng, K., Wen, H., Yang, X., Wu, J. (2020). In vitro induction and characterization of hexaploid Pennisetum × advena, an ornamental grass. Plant Cell Tissue Organ Cult., 142, 221–228. https://doi.org/10.1007/s11240-020-01814-5 DOI: https://doi.org/10.1007/s11240-020-01814-5

Downloads

Download data is not yet available.

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.