Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 1 (2024)

Articles

Effects of summer pruning on the growth and photosynthetic characteristics of pepper (Capsicum annuum L.)

DOI: https://doi.org/10.24326/asphc.2024.5275
Submitted: September 18, 2023
Published: 2024-02-29

Abstract

The objective of the study is to investigate the mechanism by which summer pruning enhances the growth of pepper plants, as indicated by growth and fruit appearance indicators, photosynthetic rate and gas exchange parameters, rapid light response and induction kinetics curves and the related chlorophyll fluorescence parameters. The results indicated that the leaf growth rate, the individual pepper fruit weight, and the fruit longitudinal and cross diameters of the pruned group were significantly higher than those of the control. The stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) of the pruned group were significantly higher than those of the control. The initial slope of the rapid light response curve, which represents light energy utilisation efficiency (α), the maximum electron transfer rate (Jmax) and saturated light intensity (PARsat) were all higher in the summer pruning group than in the control group. The F0 of the pruned group decreased by 16.83%, Fv/F0 increased by 23.69%, PIabs increased by 58.33%, and DIo/RC decreased by 22.09% compared to the control group. In summary, summer pruning significantly improves the leaf growth rate and fruit appearance quality of pepper, effectively promotes the photosynthesis of functional leaves, and reduces the degree of stress under adverse environmental conditions.

References

  1. Adhikari, S., Kandel, T.P. (2015). Effect of time and level of pruning on vegetative growth, flowering, yield, and quality of guava. Int. J. Fruit Sci. 15(3), 290–301. https://doi.org/10.1080/15538362.2015.1015762 DOI: https://doi.org/10.1080/15538362.2015.1015762
  2. Albarracín, V., Hall, A.J., Searles, P.S., Rousseaux, M.C. (2017). Responses of vegetative growth and fruit yield to winter and summer mechanical pruning in olive trees. Sci. Hortic. 225, 185–194. https://doi.org/10.1016/j.scienta.2017.07.005 DOI: https://doi.org/10.1016/j.scienta.2017.07.005
  3. Bano, H., Athar, H.U., Zafar, Z.U., Kalaji, H.M., Ashraf, M. (2021). Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiol. Plant 172(2), 1244–1254. https://doi.org/10.1111/ppl.13327 DOI: https://doi.org/10.1111/ppl.13327
  4. Bhusal, N., Han, S., Yoon, T. (2017). Summer pruning and reflective film enhance fruit quality in excessively tall spindle apple trees. Hortic. Environ. Biotechnol. 58, 560–567. https://doi.org/10.1007/s13580-017-0375-y DOI: https://doi.org/10.1007/s13580-017-0375-y
  5. Bora, S.S., Hazarika, D.J., Gogoi, R., Dullah, S., Gogoi, M., Barooah, M. (2022). Long-term pruning modulates microbial community structure and their functional potential in Tea (Camellia sinensis L.) soils. Appl. Soil Ecol. 176, 104483. https://doi.org/10.1016/j.apsoil.2022.104483 DOI: https://doi.org/10.1016/j.apsoil.2022.104483
  6. Cao, M., Gan,Q., Xu,Y., Lu, J.K., Zhong, L., Wang, M., Liu, S., Wang, L. (2022). Pruning improves seedling development and bioactive secondary metabolite accumulation in the leaves of Ginkgo biloba. Trees 36, 953–966. https://doi.org/10.1007/s00468-021-02260-2 DOI: https://doi.org/10.1007/s00468-021-02260-2
  7. Chen, S.Y., Cai, L., Zhang, H.P., Zhang, Q.K., Song, J.J., Zhang, Z.H., Deng, Y.F., Liu, Y.L., Wang, X.G., Fang, H. (2021). Deposition distribution, metabolism characteristics, and reduced application dose of difenoconazole in the open field and greenhouse pepper ecosystem. Agric. Ecosyst. Environ. 313, 107370. https://doi.org/10.1016/j.agee.2021.107370 DOI: https://doi.org/10.1016/j.agee.2021.107370
  8. Chiango, H., Figueiredo, A., Sousa, L., Sinclair, T., Marques da Silva, J. (2021). Assessing drought tolerance of traditional maize genotypes of Mozambique using chlorophyll fluorescence parameters. S. Afr. J. Bot. 138, 311–317. https://doi.org/10.1016/j.sajb.2021.01.005 DOI: https://doi.org/10.1016/j.sajb.2021.01.005
  9. Conesa, M.R., Martínez-López, L., Conejero, W., Vera, J., Ruiz-Sánchez, M.C. (2019). Summer pruning of early-maturing Prunus persica: Water implications. Sci. Hortic. 256, 108539. https://doi.org/10.1016/j.scienta.2019.05.066 DOI: https://doi.org/10.1016/j.scienta.2019.05.066
  10. Demirtas, N.M., Bolat, I., Ercisli, S., Ikinci, A., Olmez, H., Sahin, M., Altındag, M., Celık, B. (2010). The effects of different pruning treatments on seasonal variationof carbohydrates in Hacihaliloglu apricot cultivar. Not. Bot. Hort. Agrobot. Cluj 38(3), 223–227.
  11. Du Toit, E.S., Sithole, J., Vorster, J. (2020). Pruning intensity influences growth, flower and fruit development of Moringa oleifera Lam. under sub-optimal growing conditions in Gauteng, South Africa. S. Afr. J. Bot. 129, 448–456. https://doi.org/10.1016/j.sajb.2019.11.033 DOI: https://doi.org/10.1016/j.sajb.2019.11.033
  12. Forrester, D.I., Collopy, J.J., Beadle, C.L., Warren, C.R., Baker, T.G. (2012). Effect of thinning, pruning and nitrogen fertiliser application on transpiration, photosynthesis and water-use efficiency in a young Eucalyptus nitens plantation. Forest Ecol. Manag. 266, 286–300. https://doi.org/10.1016/j.foreco.2011.11.019 DOI: https://doi.org/10.1016/j.foreco.2011.11.019
  13. Glenn, D.M., Campostrini, E. (2011). Girdling and summer pruning in apple increase soil respiration. Sci. Hortic. 129(4), 889–893. https://doi.org/10.1016/j.scienta.2011.04.023 DOI: https://doi.org/10.1016/j.scienta.2011.04.023
  14. He, H. (2016). [Liu Mingyue: the escort of the vegetable industry in Hunan]. J. Changjiang Vegetab. 14, 1–3. In Chinese. https://doi.org/10.3865/j.issn.1001-3547.2016.14.001
  15. Ikinci, A. (2014). Influence of pre- and postharvest summer pruning on the growth, yield, fruit quality, and carbohydrate content of early season peach cultivars. Sci. World J., 104865–104868. https://doi.org/10.1155/2014/104865 DOI: https://doi.org/10.1155/2014/104865
  16. Kasampalis, D.S., Tsouvaltzis, P., Ntouros, K., Gertsis, A., Gitas, I., Siomos, A.S. (2021). The use of digital imaging, chlorophyll fluorescence and Vis/NIR spectroscopy in assessing the ripening stage and freshness status of bell pepper fruit. Comput. Electron. Agric. 187, 106265. https://doi.org/10.1016/j.compag.2021.106265 DOI: https://doi.org/10.1016/j.compag.2021.106265
  17. Kasampalis, D.S., Tsouvaltzis, P., Siomos, A.S. (2020). Chlorophyll fluorescence, non-photochemical quenching and light harvesting complex as alternatives to color measurement, in classifying tomato fruit according to their maturity stage at harvest and in monitoring postharvest ripening during storage. Postharv. Biol. Technol. 161, 111036. https://doi.org/10.1016/j.postharvbio.2019.111036 DOI: https://doi.org/10.1016/j.postharvbio.2019.111036
  18. Kovaleski, A.P., Williamson, J.G., Casamali, B., Darnell, R.L. (2015). Effects of timing and intensity of summer pruning on vegetative traits of two southern highbush blueberry cultivars. HortScience 50(1), 68–73. https://doi.org/10.21273/HORTSCI.50.1.68 DOI: https://doi.org/10.21273/HORTSCI.50.1.68
  19. Kumar, M., Rawat, V, Rawat, J.M.S., Tomar, Y.K. (2010). Effect of pruning intensity on peach yield and fruit quality. Scientia Hortic. 125(3), 218–221. https://doi.org/10.1016/j.scienta.2010.03.027 DOI: https://doi.org/10.1016/j.scienta.2010.03.027
  20. Lee, S.G., Cho, J.G., Shin, M.H., Oh, S.B., Kim, H.L., Kim, J.G. (2016). Effects of summer pruning combined with winter pruning on bush growth, yields, and fruit quality of ‘Misty’ southern highbush blueberry for two years after planting. Hortic. Environ. Biotechnol. 56, 740–748. https://doi.org/10.1007/s13580-015-0101-6 DOI: https://doi.org/10.1007/s13580-015-0101-6
  21. Lisboa, M., Acuña, E., Cancino, J., Chao, F., Muñoz, F., Rodríguez, R., Volker, P. (2014). Physiological response to pruning severity in Eucalyptus regnans plantations. New Forest 45, 753–764. https://doi.org/10.1007/s11056-014-9434-8 DOI: https://doi.org/10.1007/s11056-014-9434-8
  22. Li, X.X., Zhang, B.X. (2006). [Descriptors and data standard for Capsicum (Capsicum annuum L., Capsicum frutescens L., Capsicum chinense, Capsicum baccatum, Capsicum pubescens) pepper germplasm]. China Agric. Press, 12–22. In Chinese.
  23. Lv, J.H., Liu, Z.B., Liu, Y.H., Ou, L.J., Deng, M.H., Wang, J., Song, J.S., Ma, Y.Q., Chen, W.C., Zhang, Z.Q., Dai, X.Z., Zou, X.X. (2020). Comparative transcriptome analysis between cytoplasmic male-sterile line and its maintainer during the floral bud development of pepper. Hortic. Plant J. 6(2), 89–98. https://doi.org/10.1016/j.hpj.2020.01.004 DOI: https://doi.org/10.1016/j.hpj.2020.01.004
  24. Mao, L.Z., Tian, W.F., Shen, Y.Y., Huang, Y., Lv, J.H., Zhang, X., Sun, Y., Dai, Y.H., Zhou, Y., Yang, B.Z., Ou, L.J, Zou, X.X, Liu, Z.B. (2023). Auxin-related MYB (CaSRM1) is involved in leaf shape development and reproductive growth in pepper (Capsicum annuum L.). Scientia Hortic. 322, 112383. https://doi.org/10.1016/j.scienta.2023.112383 DOI: https://doi.org/10.1016/j.scienta.2023.112383
  25. Mendes Bezerra, A.C., da Cunha Valença, D., da Gama Junqueira, N.E., Moll Hüther, C., Borella, J., Ferreira de Pinho, C., Alves Ferreira, M., Oliveira Medici, L., Ortiz-Silva, B., Reinert, F. (2021). Potassium supply promotes the mitigation of NaCl-induced effects on leaf photochemistry, metabolism and morphology of Setaria viridis. Plant Physiol. Biochem. 160, 193–210. https://doi.org/10.1016/j.plaphy.2021.01.021 DOI: https://doi.org/10.1016/j.plaphy.2021.01.021
  26. Mierowska, A., Keutgen, N., Huysamer, M., Smith, V. (2002). Photosynthetic acclimation of apple spur leaves to summer-pruning. Sci Hortic. 92(1), 9–27. https://doi.org/10.1016/S0304-4238(01)00275-8 DOI: https://doi.org/10.1016/S0304-4238(01)00275-8
  27. Mozumder, N.R., Hwang, K.H., Lee, M.-S., Kim, E.-H., Hong, Y.-S. (2021). Metabolomic understanding of the difference between unpruning and pruning cultivation of tea (Camellia sinensis) plants. Food Res. Int. 140, 109978. https://doi.org/10.1016/j.foodres.2020.109978 DOI: https://doi.org/10.1016/j.foodres.2020.109978
  28. Peng, J., Li, W., Yuan, Y., Han, Z., Cao, Y., Shahid, M.Q., Zhang, Z., Gao, Y., Lin, S. (2022). Removal of the main inflorescence to induce reflowering of loquat. Hortic. Plant J. 8(1), 35–43. https://doi.org/10.1016/j.hpj.2021.03.009 DOI: https://doi.org/10.1016/j.hpj.2021.03.009
  29. Shao, M.Z., Shi, M.H., Hu, M., Liu, P. (2019). [Yichang points local pepper pruning regeneration cultivation technology]. J. Changjiang Veg. 15, 33–35. In Chinese.
  30. Shin, Y.K., Bhandari, S.R., Jo, J.S., Song, J.W., Lee, J.G. (2021). Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antiox idant activities in lettuce seedlings. Horticulturae 7(8), 238. https://doi.org/10.3390/horticulturae7080238 DOI: https://doi.org/10.3390/horticulturae7080238
  31. Sousaraei, N., Mashayekhi, K., Mousavizadeh, S.J., Akbarpour, V., Medina, J., Aliniaeifard, S. (2021). Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. Hortic. Environ. Biotechnol. 62, 521–535. https://doi.org/10.1007/s13580-020-00328-5 DOI: https://doi.org/10.1007/s13580-020-00328-5
  32. Sun, B.M., Zhou, X., Chen, C.M., Chen, C.J., Chen, K.H., Chen, M.X., Liu, S.Q., Chen, G.J., Cao, B.H., Cao, F.R., Lei, J.J., Zhu, Z.S. (2020). Coexpression network analysis reveals an MYB transcriptional activator involved in capsaicinoid biosynthesis in hot peppers. Hortic. Res. 7, 162. https://doi.org/10.1038/s41438-020-00381-2 DOI: https://doi.org/10.1038/s41438-020-00381-2
  33. Ye, Z.P., Suggett, D.J. Robakowski, P., Kang, H.J. (2013). A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytol. 199(1), 110–120. https://doi.org/10.1111/nph.12242 DOI: https://doi.org/10.1111/nph.12242
  34. Yuan, Z.H., Tong, H.,Yang, J., Peng, Y. (2015). [The effect of different cultivation modes on the yield and output value of chili pepper]. Hunan Agricultural Science 5, 61–62, 64. In Chinese. https://doi.org/10.16498/j.cnki.hnnykx.2015.05.023
  35. Zhang, D., Cai, W., Zhang, X., Li, W., Zhou, Y., Chen, Y., Mi, Q., Jin, L., Xu, L. (2022). Different pruning level effects on flowering period and chlorophyll fluorescence parameters of Loropetalum chinense var. Rubrum. Peer J. 10, e13406. https://doi.org/10.7717/peerj.13406 DOI: https://doi.org/10.7717/peerj.13406
  36. Zhang, L., Koc, A.B., Wang, X.N., Jiang, Y.X. (2018). A review of pruning fruit trees. IOP Conf. Ser. Earth Environ. Sci. 153(6), 062029. https://doi.org/10.1088/1755-1315/153/6/062029 DOI: https://doi.org/10.1088/1755-1315/153/6/062029
  37. Zhang, L., Xu, Y.S., Jia, Y., Wang, J.Y., Yuan, Y., Yu, Y., Tao, J.M. (2016). Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in ‘Houman’ grape. Hortic. Res. 3, 16037. https://doi.org/10.1038/hortres.2016.37 DOI: https://doi.org/10.1038/hortres.2016.37

Downloads

Download data is not yet available.

Similar Articles

<< < 41 42 43 44 45 46 47 48 49 50 > >> 

You may also start an advanced similarity search for this article.