Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 3 (2024)

Articles

Effect of drying temperature on the bioactive compounds content of rose hips (Rosa canina L.)

DOI: https://doi.org/10.24326/asphc.2024.5348
Submitted: February 26, 2024
Published: 2024-06-28

Abstract

Dog rose (Rosa canina L.) is a beautiful ornamental plant that provides fruit with high biological value. To be available throughout the year, rose hips need to be conserved, such as dried and canned. For this reason, a study was undertaken to investigate the effects of drying as the most common method for preservation. Therefore, the influence of variation drying temperature (20, 35 and 68 °C) on the content of flavonoids, total polyphenols, ascorbic acid, carotenoids and antioxidant activity - determined using the free radical source DPPH (2,2-diphenyl-1-picrylhydrazyl) and a test measuring the measuring of compounds to reduce ferric ions Fe3+ (FRAP) - of rose hips was the main topic in this study. Drying decreased total polyphenols (from 38.06 mg g–1 by fresh fruits to 9.41 mg g–1 drying to 20 °C), ascorbic acid (from 2000.5 mg 100 g–1 by fresh fruits to 1308.2 mg 100 g–1 drying to 68 °C) and flavonoids, the latter only in those dried at 35 °C (0.54 mg g–1), but did not affect the antioxidant activity of DPPH (84.21–85.73%) and FRAP (2.99–3.41 mgTr g–1). The study also showed that the extraction time influenced the antioxidant activity level of fruit infusions for the first time. The antioxidant potential FRAP value increased systematically with extraction time, but the DPPH values of extracts obtained from dried rose hips were not affected by the extraction time. These results indicate that changes in the antioxidant activity of extracts may not be linear and that the choice of the time of evaluation of this activity may determine the results.

References

  1. Adamczak, A., Buchwald, W., Zielinski. J., Mielcarek, S. (2012). Flavonoid and organic acid content in rose hips (Rosa L., sect. Caninae dc. Em. Christ.). Acta Biol. Cracov Bot., 54, 1–8. https://doi.org/10.2478/v10182-012-0012-0 DOI: https://doi.org/10.2478/v10182-012-0012-0
  2. Daels‐Rakotoarison, D.A., Gressier, B., Trotin, F., Brunet, C., Luyckx, M., Dine, T., Bailleul, F., Cazin, M., Cazin, J.C. (2002). Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytother. Res., 16(2), 157–161. https://doi.org/10.1002/ptr.985 DOI: https://doi.org/10.1002/ptr.985
  3. Egea, I., Sánchez-Bel, P., Romojaro, F., Pretel, M.T. (2010). Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Foods Hum. Nutr., 65, 121–129. https://doi.org/10.1007/s11130-010-0159-3 DOI: https://doi.org/10.1007/s11130-010-0159-3
  4. Elmastaş, M., Demir, A., Genç, N., Dölek, Ü., Güneş, M. (2017). Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chem., 235, 154–159. https://doi.org/10.1016/j.foodchem.2017.05.004 DOI: https://doi.org/10.1016/j.foodchem.2017.05.004
  5. Ercisli, S. (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food chem. 104, 1379–1384. https://doi.org/10.1016/j.foodchem.2007.01.053 DOI: https://doi.org/10.1016/j.foodchem.2007.01.053
  6. Fan, C., Pacier, C., Martirosyan, D.M. (2014). Rose hip (Rosa canina L.). A functional food perspective. Funct. Foods Health Dis., 4(12), 493–509. https://doi.org/10.31989/ffhd.v4i12.159 DOI: https://doi.org/10.31989/ffhd.v4i12.159
  7. Fattahi, A., Niyazi, F., Shahbazi, B., Farzaei, M.H., Bahrami, G. (2017). Antidiabetic mechanisms of Rosa canina fruits: an in vitro evaluation. J. Evid. Based Compl. Altern. Med., 22, 127–133. https://doi.org/10.1177/2156587216655263
  8. Hildegard of Bingen (2014). Physica. Polish Center of St. Hildegardy, Legnica, Poland. In Polish.
  9. Iancu, P., Soare, R., Dinu, M., Soare, M., Bonea, D., Popescu, M. (2020). Analysis of the existing research regarding the use of the species Rosa canina L. Sci. Papers Ser. B Hortic., 64, 325–331.
  10. İlyasoğlu, H., Arpa, T.E. (2017). Effect of brewing conditions on antioxidant properties of rosehip tea beverage: study by response surface methodology. J. Food Sci. Technol. 54, 3737–3743. https://doi.org/10.1007/s13197-017-2794-2 DOI: https://doi.org/10.1007/s13197-017-2794-2
  11. Jabłońska-Ryś, E., Zalewska-Korona, M., Kalbarczyk, J. (2009). Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam. Plant Res., 17(2), 115–120.
  12. Jürgens, A.H., Seitz, B., Kowarik, I. (2007). Genetic differentiation of Rosa canina (L.) at regional and continental scales. Plant Syst. Evol., 269, 39–53. https//doi.org/10.1007/s00606-007-0569-3 DOI: https://doi.org/10.1007/s00606-007-0569-3
  13. Kazaz, S., Baydar, H., Erbas, S. (2009). Variations in chemical compositions of Rosa damascena Mill. and Rosa canina L. fruits. Czech J. Food Sci., 27(3), 178–184. DOI: https://doi.org/10.17221/5/2009-CJFS
  14. Koca, I., Ustun, N.S., Koyuncu, T. (2009). Effect of drying conditions on antioxidant properties of rosehip fruits (Rosa canina sp.). Asian J. Chem., 21, 1061.
  15. Kolumella, L.J.M. (1991). O rolnictwie. T. 2. O drzewach. Wyd. Adam Marszałek, Toruń, Poland.
  16. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 603, 591–592. DOI: https://doi.org/10.1042/bst0110591
  17. Márquez, C.A., De Michelis, A., Giner, S.A. (2006). Drying kinetics of rose hip fruits (Rosa eglanteria L.). J. Food Eng., 77, 566–574. https://doi.org/10.1016/j.jfoodeng.2005.06.071 DOI: https://doi.org/10.1016/j.jfoodeng.2005.06.071
  18. Moldovan, C., Babotă, M., Mocan, A., Menghini, L., Cesa, S., Gavan, A., Sisea, C., Vodnar, D.C., Dias M.I., Pereira, C., Ferreira, I.C.F.R., Crişan, G., Barros, L. (2021). Optimization of the drying process of autumn fruits rich in antioxidants: A study focusing on rosehip (Rosa canina L.) and sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) and their bioactive properties. Food Funct., 12, 3939–3953. https://doi.org/10.1039/d0fo02783a DOI: https://doi.org/10.1039/D0FO02783A
  19. Mulugeta, S.M., Gosztola, B., Radácsi, P. (2022). Morphological and biochemical responses of selected species under drought. Herba Pol., 68, 1–10. https://doi.org/10.2478/hepo-2022-0019 DOI: https://doi.org/10.2478/hepo-2022-0019
  20. Nađpal, J.D., Lesjak, M.M., Šibul, F.S., Anačkov, G.T., Četojević-Simin, D.D., Mimica-Dukić, N.M., Beara, I.N. (2016). Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem., 192, 907–914. https// doi.org/10.1016/j.foodchem.2015.07.089 DOI: https://doi.org/10.1016/j.foodchem.2015.07.089
  21. Olsson, M.E., Gustavsson, K.E., Andersson, S., Nilsson, Å., Duan, R.D. (2004). Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem., 52, 7264–7271. https://doi.org/10.1021/jf030479p DOI: https://doi.org/10.1021/jf030479p
  22. Paunović, D., Kalušević, A., Petrović, T., Urošević, T., Djinović, D., Nedović, V., Popović-Djordjević, J. (2019). Assessment of chemical and antioxidant properties of fresh and dried rosehip (Rosa canina L.). Not. Bot. Horti. Agrobot. Cluj. Napoca, 47(1), 108–113. https://doi.org/47.15835/nbha47111221 DOI: https://doi.org/10.15835/nbha47111221
  23. Piljac-Žegarac, J., Valek, L., Stipčević, T., Martinez, S. (2010). Electrochemical determination of antioxidant capacity of fruit tea infusions. Food Chem., 121(3), 820–825. https://doi.org/10.1016/j.foodchem.2009.12.090 DOI: https://doi.org/10.1016/j.foodchem.2009.12.090
  24. Polish Pharmacopoeia V [Farmakopea Polska V] (1990). Urząd Rejestracji Produktów Leczniczych, Medycznych i Produktów Biobójczych, Warszawa, Poland.
  25. Roman, I., Stănilă, A., Stănilă, S. (2013). Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J., 7(1), 1–10. https://doi.org/10.1186/1752-153x-7-73 DOI: https://doi.org/10.1186/1752-153X-7-73
  26. Rossi, M., Giussani, E., Morelli, R., Scalzo, R., Nani, R.C., Torreggiani, D. (2003). Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Res. Int., 36, 999–1005. https://doi.org/10.1016/j.foodres.2003.07.002 DOI: https://doi.org/10.1016/j.foodres.2003.07.002
  27. Selahvarzian, A., Alizadeh, A., Amanolahi Baharvand, P., Eldahshan, A.O., Rasoulian, B. (2018). Medicinal properties of Rosa canina L. Herb. Med. J., 3(2), 77–84.
  28. Singelton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphoturgstic acid reagents. Amer. J. Enol. Viticult., 1, 44–58.
  29. Sultana, B., Anwar, F., Ashraf, M., Saari, N. (2012). Effect of drying techniques on the total phenolic. J. Med. Plant Res., 6(1), 161–167. https://doi.org/10.5897/JMPR11.916 DOI: https://doi.org/10.5897/JMPR11.916
  30. Taneva, I., Petkova, N., Dimov, I., Ivanov, I., Denev, P. (2016). Characterization of rose hip (Rosa canina L.) fruits extracts and evaluation of their in vitro antioxidant activity. J. Pharmacogn. Phytochem, 5, 35–38.
  31. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003 DOI: https://doi.org/10.1016/j.jfca.2006.01.003
  32. Tsai, P.J., McIntosh, J., Pearce, P., Camden, B., Jordan, B.R. (2002). Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Int. Food Res. J., 35(4), 351–356. https// doi.org/10.1016/s0963-9969(01)00129-6 DOI: https://doi.org/10.1016/S0963-9969(01)00129-6
  33. Tumbas, V.T., Čanadanović-Brunet, J.M., Četojević-Simin, D.D., Ćetković, G.S., Ðilas, S.M., Gille, L. (2011). Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food Agric., 92, 1273–1281. https://doi.org/10.1002/jsfa.4695 DOI: https://doi.org/10.1002/jsfa.4695
  34. Turkmen, N., Sari, F., Velioglu, Y.S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocâlteu methods. Food Chem., 99, 835–841. DOI: https://doi.org/10.1016/j.foodchem.2005.08.034
  35. Türkben, C., Uylaser, V., Incedayi, B., Çelikkol, I. (2010). Effects of different maturity periods and processes on nutritional components of rose hip (Rosa canina L.). J. Food Agric. Environ, 8, 26–30.
  36. Vidinamo, F., Fawzia, S., Karim, M.A. (2020). Effect of drying methods and storage with agroecological conditions on phytochemicals and antioxidant activity of fruits: a review. Crit. Rev. Food Sci. Nutr., 1–9. https://doi.org/10.1080/10408398.2020.1816891 DOI: https://doi.org/10.1080/10408398.2020.1816891
  37. Yen, G.C., Chen, H.Y. (1995). Antioxidant activity of various tea extracts in relations to their antimutagenicity. J. Agric. Food Chem., 43, 27–32. DOI: https://doi.org/10.1021/jf00049a007
  38. Yücel, E., Karakaya, T., Yücel, D. (2019). Importance of Rosa canina’s in terms of public health and Turkey forestry. Int. J. Environ. Res. Technol., 2, 204–208. https://doi.org/10.1177/2156587216655263 DOI: https://doi.org/10.1177/2156587216655263
  39. Zahara, K., Bibi, Y., Riaz, I., Sardar, N., Sadaf, H.M., Bibi, F. (2020). Pharmacological attributes of Rosa canina L: a potential nutraceutical. J. Med. Spice Plants, 25(2), 92–96 DOI: https://doi.org/10.1016/j.medidd.2019.100007

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 24 25 26 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.