Abstract
Different clones and cultivars of strawberry can differ in morphological and chemical properties, as well as productivity, adaptation to cultivation conditions, and post-harvest quality during storage and processing. Due to differences in the quality of raw materials and final products depending on the strawberry clone/cultivar, correct distinguishing clones and cultivars is important for growers, consumers and processors. This study was aimed at distinguishing advanced clones and cultivars of strawberry using an innovative approach involving image processing and artificial intelligence. The raw material included the advanced clones and cultivars of strawberry, such as clone with the breeding code T-201457-16 (Grandarosa × Elsanta), clone T-201536-06 (Clery × Grandarosa), clone T-201567-01 (Patty × Panvik), as well as the cultivars Fibion, Grandarosa, and Markat. The fruit image acquisition was performed using a digital camera. As many as 2172 image parameters were extracted from the image of each fruit converted to different color channels R, G, B, L, a, b, X, Y, Z, U, V, and S and textures with the highest discriminative power were selected to develop models using various machine learning algorithms, such as Multilayer Perceptron, MultiClass Classifier, IBk, and LMT, Linear Discriminant, Quadratic SVM, Subspace Discriminant, and Wide Neural Network. The most accurate classifications were obtained for a model built using Subspace Discriminant (96.30%) and Multilayer Perceptron (95.83%). For the model developed using Subspace Discriminant, clone T-201567-01 and cultivar Markat were completely correctly classified with the highest accuracy of 100%. Whereas in the case of the model built using Multilayer Perceptron clone T-201567-01 was characterized by the highest classification metrics, such as Precision and F-measure equal to 0.983, MCC of 0.980, PRC Area and ROC Area of 1.000. The developed approach can be used in practice to discriminate advanced clones and cultivars of strawberry in an objective and nondestructive manner.
References
- Amoriello, T., Ciccoritti, R., Ferrante, P. (2022). Prediction of strawberries’ quality parameters using artificial neural networks. Agronomy, 12, 963. https://doi.org/10.3390/agronomy12040963
- Boonyakiat, D., Chuamuangphan, C., Maniwara, P., Seehanam, P. (2016). Comparison of physico-chemical quali-ty of different strawberry cultivars at three maturity stages. Int. Food Res. J., 23, 2405–2412.
- Bouckaert, R.R., Frank, E., Hall, M., Kirkb, R., Reutemann, P., Seewald, A., Scuse, D. (2016) WEKA manual for version 3-9-1. University of Waikato, Hamilton, New Zealand.
- Choi, J.Y., Seo, K., Cho, J.S., Moon, K.D. (2021). Applying convolutional neural networks to assess the external quality of strawberries. J. Food Compos. Anal., 102, 104071. https://doi.org/10.1016/j.jfca.2021.104071
- de Souzam D.C., Ossani, P.C., Costa, A.S., Guerra, T.S., Araújo, A.L., Resende, F.V., Resende, L.V. (2021). Selection of experimental strawberry clones for fruit appearance attributes. Pesqi. Agropecu. Bras., 56, e02560. https://doi.org/10.1590/S1678-3921.pab2021.v56.02560
- Dziadczyk, P., Bolibok, H., Tyrka, M., Hortyński, J.A. (2003). In vitro selection of strawberry (Fragaria × ananassa Duch.) clones tolerant to salt stress. Euphytica, 132(1), 49–55. https://doi.org/10.1023/A:1024647600516
- Frank, E., Hall, M.A., Witten, I.H. (2016). The WEKA Workbench. Online appendix for data mining: practical ma-chine learning tools and techniques. Morgan Kaufmann, Burlington.
- Galvão, A.G., Resende, L.V., Maluf, W.R., de Resende, J.T.V., Ferraz, A.K.L., Marodin, J.C. (2017). Breeding new improved clones for strawberry production in Brazil. Acta Sci. Agron., 39, 149–155. https://doi.org/10.4025/actasciagron.v39i2.30773
- Gao, Z., Shao, Y., Xuan, G., Wang, Y., Liu, Y., Han, X. (2020) Real-time hyperspectral imaging for the in-field esti-mation of strawberry ripeness with deep learning. Artif. Intell. Agric., 4, 31–38. https://doi.org/10.1016/j.aiia.2020.04.003
- Jung, H.J., Veerappan, K., Natarajan, S., Jeong, N., Hwang, I., Nagano, S., Shirasawa, K., Isobe, S., Nou, I.S. (2017). A system for distinguishing octoploid strawberry cultivars using high-throughput SNP genotyping. Tropical Plant Biol., 10, 68–76. https://doi.org/10.1007/s12042-017-9185-8
- Ladika, G., Strati, I.F., Tsiaka, T., Cavouras, D., Sinanoglou, V.J. (2024). On the assessment of strawberries’ shelf-life and quality, based on image analysis, physicochemical methods, and chemometrics. Foods, 13, 234. https://doi.org/10.3390/foods13020234
- Lee, C., Lee, J., Lee, J. (2022). Relationship of fruit color and anthocyanin content with related gene expression differ in strawberry cultivars during shelf life. Sci. Hortic., 301, 111109. https://doi.org/10.1016/j.scienta.2022.111109
- Liu, Q., Sun, K., Peng, J., Xing, M., Pan, L., Tu, K. (2018). Identification of bruise and fungi contamination in straw-berries using hyperspectral imaging technology and multivariate analysis. Food Anal. Methods, 11, 1518–1527. https://doi.org/10.1007/s12161-017-1136-3
- Parra-Palma, C., Morales-Quintana, L., Ramos, P. (2020). Phenolic content, color development, and pig-ment−related gene expression: a comparative analysis in different cultivars of strawberry during the ripening process. Agronomy, 10, 588. https://doi.org/10.3390/agronomy10040588
- Patel, A., Lee, W.S., Peres, N.A. (2021). Strawberry plant wetness detection using computer vision and deep learning. Smart Agric. Technol., 1, 100013. https://doi.org/10.1016/j.atech.2021.100013
- Patel, H., Taghavi, T., Samtani, J.B. (2023). Fruit quality of several strawberry cultivars during the harvest season under high tunnel and open field environments. Horticulturae, 9, 1084. https://doi.org/10.3390/horticulturae9101084
- Ropelewska, E. (2022). Diversity of plum stones based on image texture parameters and machine learning algo-rithms. Agronomy, 12, 762. https://doi.org/10.3390/agronomy12040762
- Ropelewska, E., Cai, X., Zhang, Z., Sabanci, K., Aslan, M.F. (2022). Benchmarking machine learning approaches to evaluate the cultivar differentiation of plum (Prunus domestica L.) kernels. Agriculture, 12, 285. https://doi.org/10.3390/agriculture12020285
- Ropelewska, E., Rady, A.M., Watson, N.J. (2023). Apricot stone classification using image analysis and machine learning. Sustainability, 15, 9259. https://doi.org/10.3390/su15129259
- Strzelecki, M., Szczypiński, P., Materka, A., Klepaczko, A. (2013) A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res., sec. A, Accel. Spectrom. Detect. As-soc. Equip., 702, 137–140. https://doi.org/10.1016/j.nima.2012.09.006
- Sturm, K., Koron, D., Stampar, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem., 83, 417–422. https://doi.org/10.1016/S0308-8146(03)00124-9
- Su, Z., Zhang, C., Yan, T., Zhu, J., Zeng, Y., Lu. X. et al. (2021) Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches. Front. Plant Sci., 12 ,736334. https://doi.org/10.3389/fpls.2021.736334
- Sun, C., Yang, X., Gu, Q., Jiang, G., Shen, L., Zhou, J., Li, L., Chen, H., Zhang, G., Zhang, Y. (2023). Comprehensive analysis of nanoplastic effects on growth phenotype, nanoplastic accumulation, oxidative stress response, gene expression, and metabolite accumulation in multiple strawberry cultivars. Science of The Total Environment 897, 165432. https://doi.org/10.1016/j.scitotenv.2023.165432
- Szczypiński, P.M., Strzelecki, M., Materka, A. (2007) Mazda-a software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Korea, 23–24 November 2007, pp. 245–249.
- Szczypiński, P.M., Strzelecki, M., Materka, A., Klepaczko, A. (2009). MaZda – A software package for image tex-ture analysis. Comp. Meth. Progr. Biomed., 94, 66–76. https://doi.org/10.1016/j.cmpb.2008.08.005
- Şener, S., Sayğı, H., Duran, C.N. (2023). Responses of in vitro strawberry plants to drought stress under the influence of nano-silicon dioxide. Sustainability, 15, 15569. https://doi.org/10.3390/su152115569
- Tang, X., Li, Y., Fang, M., Li, W., Hong, Y., Li, Y. (2024). Effects of different water storage and fertilizer retention substrates on growth, yield and quality of strawberry. Agronomy, 14, 205. https://doi.org/10.3390/agronomy14010205
- Teribia, N., Buvé, C., Bonerz, D., Aschoff, J., Hendrickx, M., Van Loey, A. (2021). Effect of cultivar, pasteurization and storage on the volatile and taste compounds of strawberry puree. LWT (Lebensm. Wiss. Technol.), 150, 112007. https://doi.org/10.1016/j.lwt.2021.112007
- Unlersen, M.F., Sonmez, M.E., Aslan, M.F., Demir, B., Aydin, N., Sabanci, K., Ropelewska, E. (2022). CNN–SVM hybrid model for varietal classification of wheat based on bulk samples. Eur. Food Res. Technol., 248, 2043–2052. https://doi.org/10.1007/s00217-022-04029-4
- Whitaker, V.M. (2011). Applications of molecular markers in strawberry. J. Berry Res., 1, 115–127.
- Witten, I.H., Frank, E. (2005). Data mining: practical machine learning tools and techniques. Elsevier, San Francisco.
- Yamamoto, K., Ninomiya, S., Kimura, Y., Hashimoto, A., Yoshioka, Y., Kameoka, T. (2015). Strawberry cultivar identification and quality evaluation on the basis of multiple fruit appearance features. Comput. Electron. Agric., 110, 233–240. https://doi.org/10.1016/j.compag.2014.11.018
- Zhang, C., Guo, C., Liu, F., Kong, W., He, Y., Lou, B. (2016). Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng., 179, 11–18. https://doi.org/10.1016/j.jfoodeng.2016.01.002
Downloads
Download data is not yet available.
-
Edyta Kosterna,
Anna Zaniewicz-Bajkowska,
Jolanta Franczuk,
Robert Rosa,
EFFECT OF FOLIAR FEEDING ON THE YIELD LEVEL AND QUALITY OF SIX LARGE-FRUIT MELON (Cucumis melo L.) CULTIVARS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 8 No. 3 (2009)
-
Hüseyin Karlidağ,
Metin Turan,
Fırat Ege Karaat,
Ekrem Ozlu,
Francisco Arriaga,
Tuncay Kan,
Salih Atay,
RESPONSE OF HEAVY METAL CONTENTS IN APRICOTS TO DIFFERENT TRANSPORTATION MODES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 1 (2019)
-
Katarzyna Kowalczyk,
Janina Gajc-Wolska,
Dawid Bujalski,
Małgorzata Mirgos,
Monika Niedzińska,
Katarzyna Mazur,
Paweł Żołnierczyk,
Dariusz Szatkowski,
Maciej Cichoń,
Nina Łęczycka,
THE EFFECT OF SUPPLEMENTAL ASSIMILATION LIGHTING WITH HPS AND LED LAMPS ON THE CUCUMBER YIELDING AND FRUIT QUALITY IN AUTUMN CROP
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 4 (2018)
-
Robert Kurlus,
Sławomir Świerczyński,
Krzysztof Rutkowski,
Henryk Ratajkiewicz,
Agnieszka Malinowska,
Aleksandra Wyrwał,
EXOGENUS ‘GA3’ AND ‘GA4+7’ EFFECTS ON PHENOLOGICAL INDICES, FROST HARDINESS AND QUALITY PROPERTIES OF ‘ENGLISH MORELLO’ SOUR CHERRY (Prunus cerasus L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 6 (2017)
-
Elżbieta Paduch-Cichal,
Tomasz Krupa,
Ewa Mirzwa-Mróz,
Marek Stefan Szyndel,
Karol Staniszewski,
Wojciech Kukuła,
Elżbieta Mielniczuk,
Marcin Wit,
Wojciech Wakuliński,
Effect of virus infection on the fruit quality of sour cherry cultivar Łutówka
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 2 (2024)
-
Farhood Yeganehpoor,
Saeid Z ehtab-Salmasi,
Jalil Shafagh-Kolvanagh,
Kazem Ghassemi-Golezani,
Soheila Dastborhan,
CAN APPLICATION OF NITROGEN FERTILIZERS AND SALICYLIC ACID IMPROVE GROWTH AND FRUIT YIELD OF CORIANDER UNDER WATER DEFICIT?
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Marek Franciszek Grabowski,
Incidence of postharvest fungal diseases of apples in integrated fruit production
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 1 (2021)
-
Mohammad Hossein Ansari,
Davood Hashemabadi,
Maryam Mahdavi,
Behzad Kaviani,
THE ROLE OF Pseudomonas STRAINS AND ARBUSCULAR MYCORRHIZA FUNGI AS ORGANIC PHOSPHATE–SOLUBILIZING IN THE YIELD AND QUALITY IMPROVEMENT OF STRAWBERRY (Fragaria × ananassa Duch., cv. Selva) FRUIT
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 4 (2018)
-
Burhan Ozturk,
Kenan Yıldız,
Halil Erdem,
Orhan Karakaya,
Ahmet Ozturk,
AMINOETHOXYVINYLGLYCINE AND FOLIAR ZINC TREATMENTS PLAY A KEY ROLE IN PRE-HARVEST DROPS AND FRUIT QUALITY ATTRIBUTES OF ‘WILLIAM’S PRIDE’ APPLE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Ersin Atay,
Bruno Hucbourg,
Aurore Drevet,
Pierre-Éric Lauri,
EFFECTS OF PREHARVEST DEFICIT IRRIGATION TREATMENTS IN COMBINATION WITH REDUCED NITROGEN FERTILIZATION ON ORCHARD PERFORMANCE OF NECTARINE WITH EMPHASIS ON POSTHARVEST DISEASES AND PRUNING WEIGHTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 1 (2019)
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.