Abstract
Different clones and cultivars of strawberry can differ in morphological and chemical properties, as well as productivity, adaptation to cultivation conditions, and post-harvest quality during storage and processing. Due to differences in the quality of raw materials and final products depending on the strawberry clone/cultivar, correct distinguishing clones and cultivars is important for growers, consumers and processors. This study was aimed at distinguishing advanced clones and cultivars of strawberry using an innovative approach involving image processing and artificial intelligence. The raw material included the advanced clones and cultivars of strawberry, such as clone with the breeding code T-201457-16 (Grandarosa × Elsanta), clone T-201536-06 (Clery × Grandarosa), clone T-201567-01 (Patty × Panvik), as well as the cultivars Fibion, Grandarosa, and Markat. The fruit image acquisition was performed using a digital camera. As many as 2172 image parameters were extracted from the image of each fruit converted to different color channels R, G, B, L, a, b, X, Y, Z, U, V, and S and textures with the highest discriminative power were selected to develop models using various machine learning algorithms, such as Multilayer Perceptron, MultiClass Classifier, IBk, and LMT, Linear Discriminant, Quadratic SVM, Subspace Discriminant, and Wide Neural Network. The most accurate classifications were obtained for a model built using Subspace Discriminant (96.30%) and Multilayer Perceptron (95.83%). For the model developed using Subspace Discriminant, clone T-201567-01 and cultivar Markat were completely correctly classified with the highest accuracy of 100%. Whereas in the case of the model built using Multilayer Perceptron clone T-201567-01 was characterized by the highest classification metrics, such as Precision and F-measure equal to 0.983, MCC of 0.980, PRC Area and ROC Area of 1.000. The developed approach can be used in practice to discriminate advanced clones and cultivars of strawberry in an objective and nondestructive manner.
References
- Amoriello, T., Ciccoritti, R., Ferrante, P. (2022). Prediction of strawberries’ quality parameters using artificial neural networks. Agronomy, 12, 963. https://doi.org/10.3390/agronomy12040963
- Boonyakiat, D., Chuamuangphan, C., Maniwara, P., Seehanam, P. (2016). Comparison of physico-chemical quali-ty of different strawberry cultivars at three maturity stages. Int. Food Res. J., 23, 2405–2412.
- Bouckaert, R.R., Frank, E., Hall, M., Kirkb, R., Reutemann, P., Seewald, A., Scuse, D. (2016) WEKA manual for version 3-9-1. University of Waikato, Hamilton, New Zealand.
- Choi, J.Y., Seo, K., Cho, J.S., Moon, K.D. (2021). Applying convolutional neural networks to assess the external quality of strawberries. J. Food Compos. Anal., 102, 104071. https://doi.org/10.1016/j.jfca.2021.104071
- de Souzam D.C., Ossani, P.C., Costa, A.S., Guerra, T.S., Araújo, A.L., Resende, F.V., Resende, L.V. (2021). Selection of experimental strawberry clones for fruit appearance attributes. Pesqi. Agropecu. Bras., 56, e02560. https://doi.org/10.1590/S1678-3921.pab2021.v56.02560
- Dziadczyk, P., Bolibok, H., Tyrka, M., Hortyński, J.A. (2003). In vitro selection of strawberry (Fragaria × ananassa Duch.) clones tolerant to salt stress. Euphytica, 132(1), 49–55. https://doi.org/10.1023/A:1024647600516
- Frank, E., Hall, M.A., Witten, I.H. (2016). The WEKA Workbench. Online appendix for data mining: practical ma-chine learning tools and techniques. Morgan Kaufmann, Burlington.
- Galvão, A.G., Resende, L.V., Maluf, W.R., de Resende, J.T.V., Ferraz, A.K.L., Marodin, J.C. (2017). Breeding new improved clones for strawberry production in Brazil. Acta Sci. Agron., 39, 149–155. https://doi.org/10.4025/actasciagron.v39i2.30773
- Gao, Z., Shao, Y., Xuan, G., Wang, Y., Liu, Y., Han, X. (2020) Real-time hyperspectral imaging for the in-field esti-mation of strawberry ripeness with deep learning. Artif. Intell. Agric., 4, 31–38. https://doi.org/10.1016/j.aiia.2020.04.003
- Jung, H.J., Veerappan, K., Natarajan, S., Jeong, N., Hwang, I., Nagano, S., Shirasawa, K., Isobe, S., Nou, I.S. (2017). A system for distinguishing octoploid strawberry cultivars using high-throughput SNP genotyping. Tropical Plant Biol., 10, 68–76. https://doi.org/10.1007/s12042-017-9185-8
- Ladika, G., Strati, I.F., Tsiaka, T., Cavouras, D., Sinanoglou, V.J. (2024). On the assessment of strawberries’ shelf-life and quality, based on image analysis, physicochemical methods, and chemometrics. Foods, 13, 234. https://doi.org/10.3390/foods13020234
- Lee, C., Lee, J., Lee, J. (2022). Relationship of fruit color and anthocyanin content with related gene expression differ in strawberry cultivars during shelf life. Sci. Hortic., 301, 111109. https://doi.org/10.1016/j.scienta.2022.111109
- Liu, Q., Sun, K., Peng, J., Xing, M., Pan, L., Tu, K. (2018). Identification of bruise and fungi contamination in straw-berries using hyperspectral imaging technology and multivariate analysis. Food Anal. Methods, 11, 1518–1527. https://doi.org/10.1007/s12161-017-1136-3
- Parra-Palma, C., Morales-Quintana, L., Ramos, P. (2020). Phenolic content, color development, and pig-ment−related gene expression: a comparative analysis in different cultivars of strawberry during the ripening process. Agronomy, 10, 588. https://doi.org/10.3390/agronomy10040588
- Patel, A., Lee, W.S., Peres, N.A. (2021). Strawberry plant wetness detection using computer vision and deep learning. Smart Agric. Technol., 1, 100013. https://doi.org/10.1016/j.atech.2021.100013
- Patel, H., Taghavi, T., Samtani, J.B. (2023). Fruit quality of several strawberry cultivars during the harvest season under high tunnel and open field environments. Horticulturae, 9, 1084. https://doi.org/10.3390/horticulturae9101084
- Ropelewska, E. (2022). Diversity of plum stones based on image texture parameters and machine learning algo-rithms. Agronomy, 12, 762. https://doi.org/10.3390/agronomy12040762
- Ropelewska, E., Cai, X., Zhang, Z., Sabanci, K., Aslan, M.F. (2022). Benchmarking machine learning approaches to evaluate the cultivar differentiation of plum (Prunus domestica L.) kernels. Agriculture, 12, 285. https://doi.org/10.3390/agriculture12020285
- Ropelewska, E., Rady, A.M., Watson, N.J. (2023). Apricot stone classification using image analysis and machine learning. Sustainability, 15, 9259. https://doi.org/10.3390/su15129259
- Strzelecki, M., Szczypiński, P., Materka, A., Klepaczko, A. (2013) A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res., sec. A, Accel. Spectrom. Detect. As-soc. Equip., 702, 137–140. https://doi.org/10.1016/j.nima.2012.09.006
- Sturm, K., Koron, D., Stampar, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem., 83, 417–422. https://doi.org/10.1016/S0308-8146(03)00124-9
- Su, Z., Zhang, C., Yan, T., Zhu, J., Zeng, Y., Lu. X. et al. (2021) Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches. Front. Plant Sci., 12 ,736334. https://doi.org/10.3389/fpls.2021.736334
- Sun, C., Yang, X., Gu, Q., Jiang, G., Shen, L., Zhou, J., Li, L., Chen, H., Zhang, G., Zhang, Y. (2023). Comprehensive analysis of nanoplastic effects on growth phenotype, nanoplastic accumulation, oxidative stress response, gene expression, and metabolite accumulation in multiple strawberry cultivars. Science of The Total Environment 897, 165432. https://doi.org/10.1016/j.scitotenv.2023.165432
- Szczypiński, P.M., Strzelecki, M., Materka, A. (2007) Mazda-a software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Korea, 23–24 November 2007, pp. 245–249.
- Szczypiński, P.M., Strzelecki, M., Materka, A., Klepaczko, A. (2009). MaZda – A software package for image tex-ture analysis. Comp. Meth. Progr. Biomed., 94, 66–76. https://doi.org/10.1016/j.cmpb.2008.08.005
- Şener, S., Sayğı, H., Duran, C.N. (2023). Responses of in vitro strawberry plants to drought stress under the influence of nano-silicon dioxide. Sustainability, 15, 15569. https://doi.org/10.3390/su152115569
- Tang, X., Li, Y., Fang, M., Li, W., Hong, Y., Li, Y. (2024). Effects of different water storage and fertilizer retention substrates on growth, yield and quality of strawberry. Agronomy, 14, 205. https://doi.org/10.3390/agronomy14010205
- Teribia, N., Buvé, C., Bonerz, D., Aschoff, J., Hendrickx, M., Van Loey, A. (2021). Effect of cultivar, pasteurization and storage on the volatile and taste compounds of strawberry puree. LWT (Lebensm. Wiss. Technol.), 150, 112007. https://doi.org/10.1016/j.lwt.2021.112007
- Unlersen, M.F., Sonmez, M.E., Aslan, M.F., Demir, B., Aydin, N., Sabanci, K., Ropelewska, E. (2022). CNN–SVM hybrid model for varietal classification of wheat based on bulk samples. Eur. Food Res. Technol., 248, 2043–2052. https://doi.org/10.1007/s00217-022-04029-4
- Whitaker, V.M. (2011). Applications of molecular markers in strawberry. J. Berry Res., 1, 115–127.
- Witten, I.H., Frank, E. (2005). Data mining: practical machine learning tools and techniques. Elsevier, San Francisco.
- Yamamoto, K., Ninomiya, S., Kimura, Y., Hashimoto, A., Yoshioka, Y., Kameoka, T. (2015). Strawberry cultivar identification and quality evaluation on the basis of multiple fruit appearance features. Comput. Electron. Agric., 110, 233–240. https://doi.org/10.1016/j.compag.2014.11.018
- Zhang, C., Guo, C., Liu, F., Kong, W., He, Y., Lou, B. (2016). Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng., 179, 11–18. https://doi.org/10.1016/j.jfoodeng.2016.01.002
Downloads
Download data is not yet available.
-
Agnieszka Masny,
Wiesław Mądry,
Edward Żurawicz,
COMBINING ABILITY OF SELECTED DESSERT STRAWBERRY CULTIVARS WITH DIFFERENT FRUIT RIPENING PERIODS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 1 (2014)
-
Jacek Gawroński,
Jerzy Hortyński,
Elżbieta Kaczmarska,
Magdalena Dyduch-Siemińska,
Wojciech Marecki,
Agata Witorożec,
EVALUATION OF PHENOTYPIC AND GENOTYPIC DIVERSITY OF SOME POLISH AND RUSSIAN BLUE HONEYSUCKLE (Lonicera caerulea L.) CULTIVARS AND CLONES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 4 (2014)
-
Zbigniew Jarosz,
Katarzyna Dzida,
Krzysztof Bartnik,
YIELDING AND CHEMICAL COMPOSITION OF „HONEOYE” CULTIVAR STRAWBERRIES DEPENDING ON THE KIND OF SUBSTRATUM AND NITROGEN DOSE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 10 No. 1 (2011)
-
Nebojša Milošević,
Evica Mratinić,
Ivana S. Glišić,
Tomo Milošević,
PRECOCITY, YIELD AND POSTHARVEST PHYSICAL AND CHEMICAL PROPERTIES OF PLUMS RESISTANT TO SHARKA GROWN IN SERBIAN CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 11 No. 6 (2012)
-
Ersin Atay,
Seckin Gargin,
Ahmet Esitken,
Ayse Nilgun Atay,
Mesut Altindal,
Meltem Emre,
ORCHARD PERFORMANCE OF APPLE WORSENS AS WEED COMPETITION INCREASES: A LONG-TERM FIELD STUDY UNDER MEDITERRANEAN CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 5 (2017)
-
Marzena Błażewicz-Woźniak,
Marzena Brodowska,
Monika Karsznia,
Effectiveness of UAN fertilisation with potassium thiosulphate in pepper and tomato cultivation
,
Acta Scientiarum Polonorum Hortorum Cultus: ONLINE FIRST
-
Dragana Stamenov,
Timea I. Hajnal-Jafari,
Biljana Najvirt,
Snežana Anđelković,
Jelena Tomić,
Simonida S. Đurić,
A COMPARATIVE ANALYSIS OF PLANT GROWTH-PROMOTING TRAITS OF Pseudomonas AND Bacillus STRAINS ISOLATED FROM Lolium perenne RHIZOSPHERIC SOIL IN VOJVODINA (SERBIA) AND THEIR EFFECT ON THE PLANT YIELD
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 3 (2020)
-
Sadiye Peral Eyduran,
Meleksen Akin,
Sezai Ercisli,
Emrah Zeybekoglu,
Morphological and biochemical diversity in Rosa species
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 5 (2022)
-
Abdulaziz R. Alharbi,
Jouke Campen,
Mohamed Sharaf,
Feije de Zwart,
Wim Voogt,
Kess Scheffers,
Ilias Tsafaras,
Mohamed E. Abdelaziz,
Omer Babiker,
Nazim Gruda,
Muien Qaryouti,
Khalid Al-Assaf,
DE EFFECT OF CLEAR AND DEFUSE GLASS COVERING MATERIALS ON FRUIT YIELD AND ENERGY EFFICIENCY OF GREENHOUSE CUCUMBER GROWN IN HOT CLIMATE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 3 (2021)
-
Józef Nurzyński,
YIELD AND QUALITY OF GREENHOUSE TOMATO FRUIT GROWN IN RAPE STRAW SUBSTRATES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 12 No. 1 (2013)
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.