Skip to main navigation menu Skip to main content Skip to site footer

Vol. 23 No. 5 (2024)

Articles

Influence of plant regulators on the micropropagation of Echinacea purpurea ‘Raspberry Truffle’

DOI: https://doi.org/10.24326/asphc.2024.5384
Submitted: August 27, 2024
Published: 2024-11-30

Abstract

A micropropagation protocol was conducted for Echinacea purpurea ‘Raspberry Truffle’ to determine the influence of medium amendment with a plant growth regulator (PGR). The efficacy of meta-Topolin (mT) and benzyladenine (BA) was evaluated during the proliferation stages. Additionally, indole-3-butyric acid (IBA) and naphthaleneacetic acid (NAA) were assessed during the rooting stages. Multiple shoots were initiated and proliferated on a Murashige and Skoog (MS) medium and supplemented with 1 mL·L–1 of a Plant Preservative Mixture (PPM) and selected plant growth regulators with concentrations of 0.5, 1 and 2 mg·L–1 for shoot proliferation; and 0.05, 0.1, 0.5 and 1 mg·L–1, for rooting performance. The combination of mT and BA in the medium significantly enhanced shoot regeneration and elongation. Both, mT and BA resulted in 100% shoot regeneration. mT at a concentration of 0.5 mg·L–1 in the MS medium induced the maximum number of shoots, followed by 0.5 mg·L–1 BA. The supplementation of 0.05 mg·L–1 and 1 mg·L–1 IBA, and 0.1 NAA mg·L–1 resulted in a 100% root percentage with the highest number of roots found in the media amended with 1 mg·L–1 IBA and 0.1 mg·L–1 NAA.

References

  1. Adamowski, M., Friml, J. (2015). PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell, 27(1), 20–32. https://doi.org/10.1105/tpc.114.134874.
  2. Amoo, S.O., Finnie, J.F., Van Staden, J. (2011). The role of meta-topolins in alleviating micropropagation problems. Plant Growth Reg., 63(2), 197–206. https://doi.org/10.1007/s10725-010-9504-7
  3. Armitage, A.M. (2008). Herbaceous perennial plants: A treatise on their identification, culture, and garden attributes. Quarto Publishing Group, USA.
  4. Ashraf, M.F., Aziz, M.A., Kemat, N., Ismail, I. (2014). Effect of cytokinin types, concentrations and their interactions on in vitro shoot regeneration of Chlorophytum borivilianum Sant. & Fernandez. Electr. J. Biotechnol., 17(6), 275–279. https://doi.org/10.1016/j.ejbt.2014.08.004
  5. Ault, J.R. (2007). Coneflower: Echinacea species. In: N.O. Anderson (ed.), Flower breeding and genetics: Issues, challenges and opportunities for the 21st century. Springer Netherlands, 801–824. https://doi.org/10.1007/978-1-4020-4428-1_29
  6. Burlou-Nagy, C., Bănică, F., Jurca, T., Vicas, L. G., Marian, E., Mureșan, M. E., Bácskay, I., Kiss, R., Fehér, P., & Pallag, A. (2022). Echinacea purpurea (L.) Moench: Biological and pharmacological properties – a review. Plants, 11(9), 1244. https://doi.org/10.3390/plants11091244
  7. Calabrese, E.J., Baldwin, L.A. (2002). Defining hormesis. Human Exp. Toxicol., 21(2), 91–97. https://doi.org/10.1191/0960327102ht217oa
  8. Coleman, G.D., Ernst, S.G. (1989). In vitro shoot regeneration of Populus deltoides: effect of cytokinin and genotype. Plant Cell Rep., 8, 459–462. https://doi.org/10.1007/BF00269048
  9. Cortleven, A., Leuendorf, J.E., Frank, M., Pezzetta, D., Bolt, S., Schmülling, T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant, Cell Environ., 42(3), 998–1018. https://doi.org/10.1111/pce.13494
  10. Dahanayake, N., Chen, X.L., Zhao, F.C., Yang, Y.C. (2011). An efficient in vitro propagation system for purple cone-flower (Echinacea purpurea L.). Trop. Agric. Res. Extension, 13(2), 29–32. http://dx.doi.org/10.4038/tare.v13i2.3135
  11. Debergh, P.C., Aitken-Christie, J., Cohen, D., Grout, B., Von Arnold, S., Zimmerman, R., Ziv, M. (1992). Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell, Tiss. Organ Cult., 30(2), 135–140. https://doi.org/10.1007/BF00034381
  12. Gantait, S., Mitra, S. (2021). Role of meta-topolin on in vitro shoot regeneration: An insight. In: N. Ahmad, M. Strnad (eds). Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-9046-7_12
  13. Gao, J., Zhuang, S., Zhang, W. (2024). Advances in plant auxin biology: Synthesis, metabolism, signaling, interaction with other hormones, and roles under abiotic stress. Plants, 13(17), 2523. https://doi.org/10.3390/plants13172523
  14. George, E.F., Hall, M.A., De Klerk, G.-J. (eds), (2008). Plant propagation by tissue culture (3rd ed.). Springer. https://doi.org/10.1007/978-1-4020-5005-3
  15. Guilfoyle, T.J., Hagen, G. (2007). Auxin response factors. Curr. Opin. Plant Biol., 10(5), 453–460. https://doi.org/10.1016/j.pbi.2007.08.014
  16. Hwang, I., Sheen, J., Müller, B. (2012). Cytokinin signaling networks. Ann. Rev. Plant Biol., 63, 353–380. https://doi.org/10.1146/annurev-arplant-042811-105503
  17. Kőszeghi, S., Bereczki, C., Balog A., Benedek, K. (2014). Comparing the effects of benzyladenine and meta-topolin on sweet basil (Ocimum basilicum) micropropagation. Notulae Sci. Biol. 6(4), 422–427. https://doi.org/10.15835/nsb649464
  18. Lakshmanan, P., Danesh, M., Taji, A. (2002). Production of four commercially cultivated Echinacea species by different methods of in vitro regeneration. J. Hortic. Sci. Biotechnol., 77, 158–163. https://doi.org/10.1080/14620316.2002.11511473
  19. Ljung, K. (2013). Auxin metabolism and homeostasis during plant development. Development, 140(5), 943–950. https://doi.org/10.1242/dev.086363
  20. Nakhooda, M. (2011). The actions of, and interactions between, auxins and cytokinins and their effect on in vitro rooting of selected Eucalyptus clones. Doctoral dissertation in the School of Biological and Conservation Sciences, Faculty of Science and Agriculture, University of KwaZulu-Natal, Durban, South Africa.
  21. Nazir, U., Gul, Z., Shah, G.M., Khan, N.I. (2022). Interaction effect of auxin and cytokinin on in vitro shoot regeneration and rooting of endangered medicinal plant Valeriana jatamansi Jones through tissue culture. Am. J. Plant Sci., 13(2), 223–240. https://10.4236/ajps.2022.132014
  22. Nissen, S., Sutter, E. (1990). Stability of IAA and IBA in nutrient medium to several tissue culture procedures. DigitalCommons @University of Nebraska-Lincoln. Retrieved from https://digitalcommons.unl.edu.
  23. Parsons, J.L., Cameron, S.I., Harris, C.S., Smith, M.L. (2018). Echinacea biotechnology: advances, commercialization and future considerations. Pharmaceut. Biol., 56(1), 485–494. https://doi.org/10.1080/13880209.2018.1501583
  24. Pasternak, T.P., Steinmacher, D. (2024). Plant growth regulation in cell and tissue culture in vitro. Plants, 13(2), 327. https://doi.org/10.3390/plants13020327
  25. Petrásek, J., Friml, J. (2009). Auxin transport routes in plant development. Development, 136(16), 2675–2688. https://doi.org/10.1242/dev.030353
  26. Preece, J.E., Read, P.E. (1993). The biology of horticulture: An introductory textbook. John Wiley & Sons.
  27. Riou-Khamlichi, C., Huntley, R., Jacqmard, A., Murray, J.A.H. (1999). Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science, 283(5407), 1541–1544. https://doi.org/10.1126/science.283.5407.1541
  28. Sakakibara, H. (2006). Cytokinins: Activity, biosynthesis, and translocation. Ann. Rev. Plant Biol., 57, 431–449. https://doi.org/10.1146/annurev.arplant.57.032905.105231
  29. Strnad, M. (2021). History of meta-topolin and the aromatic cytokinins. In: N. Ahmad, M. Strnad, Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture. Spronger, Singapore, 1–10. https://doi.org/10.1007/978-981-15-9046-7_1
  30. Taiz, L., Zeiger, E. (2010). Plant Physiology. 5th ed. Sinauer Associates, Sunderland, MA.
  31. Tyub, S., Dar, S.A., Lone, I.M., Mir, A.H., Kamili, A.N. (2021). A robust in-vitro protocol for shoot multiplication of Echinacea angustifolia. Curr. Plant Biol., 28, 100221. https://doi.org/ 10.1016/j.cpb.2021.100221
  32. Teale, W.D., Paponov, I.A., Palme, K. (2006). Auxin in action: Signaling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol., 7(11), 847–859. https://doi.org/10.1038/nrm2020
  33. To, J.P., Haberer, G., Ferreira, F.J., Deruère, J., Mason, M.G., Schaller, G.E., Alonso, J.M., Ecker, J.R., Kieber, J.J. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 16(3), 658–671. https://doi.org/10.1105/tpc.018978
  34. Demirci, T. (2022). Determination of secondary metabolite production efficiency in Echinacea purpurea callus, shoot, and root in vitro cultures with methyl jasmonate applications. Acta Physiol. Plant., 44(12), 128. https://doi.org/10.1007/s11738-022-03468-6
  35. Choffe, K.L. (2000). Micropropagation of Echinacea purpurea L. Doctoral dissertation, University of Guelph.
  36. Werner, T., Motyka, V., Strnad, M., Schmülling, T. (2001). Regulation of plant growth by cytokinin. Proc. Nation. Acad. Sci., 98(18), 10487–10492. https://doi.org/10.1073/pnas.171304098
  37. Werbrouck, S.P., Strnad, M., Van Onckelen, H.A., Debergh, P.C. (1996). Meta‐topolin, an alternative to benzyladenine in tissue culture?. Physiol. Plant., 98(2), 291–297. https://doi.org/10.1034/j.1399-3054.1996.980210.x
  38. Howell, S.H., Lall, S., Che, P. (2003). Cytokinins and shoot development. Trends Plant Sci., 8(9), 453–459. https://doi.org/10.1016/S1360-1385(03)00191-2
  39. Wu, W., Du, K., Kang, X., Wei, H. (2021). The diverse roles of cytokinins in regulating leaf development. Hortic. Res., 8. https://doi.org/10.1038/s41438-021-00558-3
  40. Zhang, Y., Yu, J., Xu, X., Wang, R., Liu, Y., Huang, S., Li, Y., Zhao, H., Zhang, X., Chen, Z., Li, Z., Wei, Z. (2022). Molecular mechanisms of diverse auxin responses during plant growth and development. Int. J. Mol. Sci., 23(20), 12495. https://doi.org/10.3390/ijms232012495

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.