Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 3 (2025)

Articles

Understanding the impact of acetamiprid-based insecticides on the biological fitness of entomopathogenic nematodes: implications for biological control

DOI: https://doi.org/10.24326/asphc.2025.5482
Submitted: January 13, 2025
Published: 30.06.2025

Abstract

The impact of acetamiprid-based insecticides on the survival and activity of entomopathogenic nematodes (EPNs) was evaluated in laboratory, focusing on two species, Steinernema feltiae and Heterorhabditis bacteriophora. Despite variations in sensitivity, with S. feltiae showing greater susceptibility, both species maintained their ability to infect Galleria mellonella larvae after exposure. Exposure to  Mospilan 20 SP® significantly decreased the reproductive capacity of S. feltiae (F = 443.215, p < 0.001), while H. bacteriophora showed greater resilience, especially when exposed to and Kobe 20 SP®. The ED50 values for H. bacteriophora increased over time with Kobe 20 SP® (0.46 ±0.04 at 24 h to 0.60 ±0.01 at 96 h), while Mospilan 20 SP®  decreased the ED50 for S. feltiae (0.55 ±0.02 at 24 h to 0.64 ±0.03 at 96 h). The study highlights that the effects of systemic insecticides extend beyond immediate mortality, influencing reproductive potential and long-term viability, particularly for more sensitive species like S. feltiae. These findings raise important considerations for integrating EPNs into pest management strategies, especially in systems reliant on chemical pesticides. Further research is recommended to explore the broader ecological impacts of neonicotinoids on beneficial nematodes and their potential interactions with other biocontrol agents, aiming to enhance the sustainability of integrated pest management systems.

References

  1. Atwa, A.A., Shamseldean, M.S., Yonis, F.A. (2013). The effect of different pesticides on reproduction of entomopathogenic nematodes. Turk. J. Entomol., 37. https://doi.org/10.16970/entomoloji.41092
  2. Casida, J.E. (2010). Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J. Agric. Food Chem., 59(7), 2923–2931. https://doi.org/10.1021/jf102438c
  3. El-Ashry, R.M., Ali, M.A., Ali, A.A. (2020). The joint action of entomopathogenic nematodes mixtures and chemical pesticides on controlling Helicoverpa armigera (Hübner). Egyp. Acad. J. Biol. Sci., F. Toxicol. Pest Control, 12(1), 101–116. https://doi.org/10.21608/eajbsa.2020.62442.1066
  4. Jeschke, P., Nauen, R. (2008). Neonicotinoids – from zero to hero in insecticide chemistry. Pest Manag. Sci., 64, 1084–1098. https://doi.org/10.1002/ps.1631
  5. Kaya, H.K., Stock, S.P. (eds.) (1997). Chapter VI. Techniques in insect nematology. In: Nematodes as Biological Control Agents. Academic Press, 213–250. https://doi.org/10.1016/B978-012432555-5/50016-6
  6. Koppenhöfer, A.M., Brown, I.M., Gaugler, R., Grewal, P.S., Kaya, H.K., Klein, M.G. (2000). Synergism of entomopathogenic nematodes and imidacloprid against white grubs: greenhouse and field evaluation. Biol. Control, 19(3), 245–251. https://doi.org/10.1006/bcon.2000.0863
  7. Koppenhöfer, A. M., Cowles, R. S., Cowles, E. A., Fuzy, E. M., & Baumgartner, L. (2002). Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biol.Control, 24(1), 90–97. https://doi.org/10.1046/j.1570-7458.2003.00008.x
  8. Koppenhöfer, A.M., Foye, S. (2024). Interactions between agrochemicals and biological control agents. In: Entomopathogenic Nematodes as Biological Control Agents. CABI, 494–518. https://doi.org/10.1079/9781800620322.0027
  9. Koppenhöfer, A.M., Grewal, P.S. (2005). Compatibility and interactions between biological control agents and chemical pesticides for integrated pest management. J. Nematol., 37(2), 178–189. https://doi.org/10.1079/9780851990170.0363
  10. Kruk, K., Dzięgielewska, M. (2020). The influence of acetamiprid and chlorpyrifos on the biological activity of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). Prog. Plant Protect., 60(3), 179–185. https://doi.org/10.14199/PPP-2020-020
  11. Kundoo, A.A., Dar, S.A., Mushtaq, M., Bashir, Z., Dar, M.S., Gul, S., Ali, M.T., Gulzar, S. (2018). Role of neonicotinoids in insect pest management: A review. J. Entomol. Zool. Stud., 6(1), 333–339.
  12. Laznik, Ž., Trdan, S. (2014). The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Manag. Sci., 70(5), 784–789. https://doi.org/10.1002/ps.3614
  13. Ligtelijn, M., Barmentlo, S.H., van Gestel, C.A.M. (2024). Field-realistic doses of the neonicotinoid acetamiprid impact natural soil arthropod community diversity and structure. Environ. Pollut., 359, 124568. https://doi.org/10.1016/j.envpol.2024.124568
  14. Miranda, M.P., Yamamoto, P.T., Garcia, R.B., Lopes, J.P., Lopes, J.R. (2016). Thiamethoxam and imidacloprid drench applications on sweet orange nursery trees disrupt the feeding and settling behavior of Diaphorina citri (Hemiptera: Liviidae). Pest Manag. Sci., 72, 1785–1793.https://doi.org/10.1002/ps.4213
  15. Morrissey, C.A., Mineau, P., Devries, J.H., Sanchez-Bayo, F., Liess, M., Cavallaro, M.C., Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates. Environ. Int., 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024
  16. Özdemir, E., İnak, E., Evlice, E., Yüksel, E., Delialioğlu, R.A., Susurluk, I.A. (2021). Effects of insecticides and synergistic chemicals on the efficacy of the entomopathogenic nematode Steinernema feltiae (Rhabditida: Steinernematidae) against Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Crop Protection, 144, 105605. https://doi.org/10.1016/j.cropro.2021.105605
  17. Özdemir, E., İnak, E., Evlice, E., Laznik, Z. (2020). Compatibility of entomopathogenic nematodes with pesticides registered in vegetable crops under laboratory conditions. J. Plant Dis. Protect., 127, 529–535. https://doi.org/10.1007/s41348-020-00371-9
  18. Polavarapu, S., Koppenhöfer, A.M., Barry, J.D., Holdcraft, R.J., Fuzy, E.M. (2007). Entomopathogenic nematodes and neonicotinoids for remedial control of oriental beetle, Anomala orientalis (Coleoptera: Scarabaeidae), in highbush blueberry. Crop Prot., 26, 1266–1271. https://doi.org/10.1016/j.cropro.2006.10.026
  19. Ramirez, K.S., Döring, M., Eisenhauer, N., Gardi, C., Ladau, J., Leff, J.W., Lentendu, G., Lindo, Z., Rillig, M.C., Russell, D., Scheu, S., John, M.G.S., de Vries, F.T., Wubet, T., van der Putten, W.H., Wall, D.H. (2015). Toward a global platform for linking soil biodiversity data. Front. Ecol. Evol., 3, 91. https://doi.org/10.3389/fevo.2015.00091
  20. Ritz, C., Baty, F., Streibig, J.C., Gerhard, D. (2015). Dose-response analysis using R. PLOS ONE, Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., et al. (2015). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action, and metabolites. Environ. Sci. Pollut. Res. Int., 22(1), 5–34. https://doi.org/10.1007/s11356-014-3470-y
  21. StatSoft Inc. (2014). STATISTICA Data Analysis Software System, Version 12.0, 1984-2014 (No. 13). TIBCO Software Inc.
  22. Stefanovska, T., Luckhart, S., Ripa, L., Stevens, G., Lewis, E. (2023). Steinernema carpocapsae. Trends Parasitol. 39(5), 400–401. https://doi.org/10.1016/j.pt.2023.01.002
  23. Stefanovska, T., Skwiercz, A., Pidlisnyuk, V., Boroday, V., Medkow, A., Zhukov, O. (2024). Effect of the biostimulants of microbiological origin on the entomopathogenic and plant parasitic nematodes from Miscanthus × Giganteus plantations. J. Hort. Res., 32(1), 13–24. https://doi.org/10.2478/johr-2024-0003
  24. Ulu, T.C. (2023). Effect of selected pesticides on the orientation of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). Turk. J. Entomol., 47(3), 339–349. https://doi.org/10.16970/entoted.1345508
  25. Ulu, T.C., Sadic, B., Susurluk, I.A. (2016). Effects of different pesticides on virulence and mortality of some entomopathogenic nematodes. Invert. Surviv. J., 13(1), 111–115. https://doi.org/10.25431/1824-307X/isj.v13i1.111-115
  26. Vanegas, L.H. and Paula, G.A. (2016). Log-symmetric distributions. Statistical properties and parameter estimation. Braz. J. Probab. Stat., 30, 196–220. https://doi.org/10.1214/14-BJPS272
  27. White, G.F. (1927). A method for obtaining infective nematode larvae from cultures. Science, 66, 302–303.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.