Abstract
Pseudomonas ‘gingeri’ is the cause of ginger blotch disease of the white button mushrooms (Agaricus bisporus). The occurrence of the disease in the cultivation results in the appearance of ginger discolouration on the mushroom caps. Currently, there is no effective method of protecting the mushroom from bacterial infection. Therefore, the selection of appropriate substrates for mushroom cultivation and environmental cultivation conditions, such as relative humidity, are of high importance in controlling the disease. The aim of the study was to evaluate the effect, on the development of ginger blotch, of two types of peat-based casing soil, with different water holding capacity, and two different air relative humidities inside the mushroom growing chamber. The cultivation trials were artificially infected with two P. ‘gingeri’ isolates, at two different inoculation doses. The blotch disease incidence on the heavy casing soil, which characterised lower water holding capacity, was significantly higher than on the medium one, regardless of the number of bacterial cells and bacterial isolate. The results also demonstrated a significant correlation between higher levels of air humidity (90% in the cultivation chamber) and the ginger blotch prevalence. It was determined that the type of casing soil and the level of air humidity in the mushroom growing room are of crucial importance for efficient mushroom cultivation. These factors can also play a significant role in preventing against bacterial disease development.
References
- Beveridge, T.J. (2001). Use of the Gram stain in microbiology. Biotech. Histochem. 76(3), 111–118.
- Braat, N., Koster M.C., Wösten, H.A.B. (2022). Beneficial interactions between bacteria and edible mushrooms. Fungal Biol. Rev., 39, 60–72. https://doi.org/10.1016/j.fbr.2021.12.001
- Buchanan, R.E., Gibbons, N.E. (1974). Bergey’s manual of determinative bacteriology, 8th ed. Williams and Wilkins, Baltimore, USA, 217–243.
- Carrasco, J., Navarro, M.J., Santos, M.F., Diánez, F., Gea, F.J. (2015). Incidence, identification and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Ann. Appl. Biol., 168, 214–224. https://doi.org/10.1111/aab.12257
- Dias, E.S., Zied, D.C., Pardo-Gimenez, A. (2021). Revisiting the casing layer. Casing materials and management in Agaricus mushroom cultivation. Sci. Agrotechnol., 45(2), https://doi.org/10.1590/1413-70542021450001R21
- Fletcher, J.T., Gaze, R.H. (2008). Mushroom pest and disease control. A color handbook. Manson Publishing, London, UK, 192 p.
- Gandy, D.G. (1967). The epidemiology of bacterial blotch of the cultivated mushroom. Rep. Glasshouse Crops Res. Inst., 966, 150–154.
- Gea, F.J., Carrasco, J., Santos, M., Diánez, F., Navarro, M.J. (2013). Incidence of Lecanicillium fungicola in white-button mushroom (Agaricus bisporus) cultivated with two types of casing soil. J. Plant Pathol., 95(1), 163–166.
- Gea, F.J., Navarro, M.J., Santos, M., Diánez, F., Carrasco, J. (2021). Control of fungal diseases in mushroom crops while dealing with fungicide resistance. A review. Microorganisms, 9(3), 585. https://doi.org/10.3390/microorganisms9030585
- Hugh, R., Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J. Bacteriol., 66(1), 24–26.
- King, E.O., Ward, M.K., Raney, D.E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clinical Med., 44, 301–307.
- Lomax, K.M. (2007). Dew point temperature related to wet mushroom caps. Mushroom News, 55(1), 4–10.
- Lelliott, R.A., Billing, E., Hayward, A.C. (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol., 29(3), 470–489. https://doi.org/10.1111/j.1365-2672.1966.tb03499.x
- Mamoun, M., Moquet, F., Savoie, J.M., Devesse, C., Ramos-Guedes-Lafargue, M., Oliver, J.M., Arpin, N. (1999). Agaricus bisporus susceptibility to bacterial blotch in relation to environment: biochemical studies. FEMS Microbiol. Lett., 181(1), 131–136. https://doi.org/10.1111/j.1574-6968.1999.tb08835.x
- McGee, C.F. (2018). Microbial ecology of the Agaricus bisporus mushroom cropping process. Appl. Microbiol. Biotechnol., 102 (3), 1075–1083. https://doi.org/10.1007/s00253-017-8683-9
- Moquet, F., Mamoun, M., Olivier, J.M. (1996). Pseudomonas tolaasii and tolaasin. Comparison of symptom induction on a wide range of Agaricus bisporus strains. FEMS Microbiol. Lett. 142, 99–103. https://doi.org/10.1016/0378-1097(96)00250-9
- Moquet, F., Mamoun, M., Ramos-Guedes-Lafargue, M., Olivier, J.M., Savoie, J.M. (1998). Differences in susceptibility of Agaricus bisporus strains to bacterial blotch and in natural cap colour related to compost composition. Plant Breed. 117(4), 385–388. https://doi.org/10.1111/j.1439-0523.1998.tb01958.x
- Navarro, M.J., Gea, F.J., González, A.J. (2018). Identification, incidence and control of bacterial blotch disease in mushroom crops by management of environmental conditions. Sci. Hort., 229, 10–18. https://doi.org/10.1016/j.scienta.2017.10.023
- Navarro, M.J., Carrasco, J., Gea, F.J. (2021). The role of water content in the casing layer for mushroom crop production and the occurrence of fungal diseases. Agronomy, 11, 2063. https://doi.org/10.3390/agronomy11102063
- Noble, R., Dobrovin-Pennington, D. (2024). Physicochemical characterisation of casings in relation to mushroom (Agaricus bisporus) cropping performance. Fungal Biol., 128, 1698–1704. https://doi.org/10.1016/j.funbio.2024.02.004
- Noble, R., Fermor, T.R., Lincoln, S., Dobrovin-Pennington, A., Evered, C.E., Mead, A. (2003). Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials. Mycologia, 95 (4), 620–629. https://doi.org/10.1080/15572536.2004.11833066
- Olivier, J.M., Mamoun, M., Munsch, P. (1997). Standarization of a method to assess mushroom blotch resistance in cultivation and wild Agaricus bisporus strains. Canad. J. Plant Pathol., 19, 36–42. https://doi.org/10.1080/07060669709500569
- Paine, S.G. (1919). Studies in bacteriosis II. A brown blotch disease of cultivated mushrooms. Ann. Appl. Biol., 5, 206–219.
- Pardo, A., De Juan, J.A., Pardo, J.E. (2002). Bacterial activity in different types of casing during mushroom cultivation (Agaricus bisporus (Lange) Imbach). Acta Aliment., 31, 327–342. https://doi.org/10.1556/aalim.31.2002.4.3
- Sapers, G.M., Miller, R.L., Pilizota, V., Kamp, F. (2001). Shelf life extension of fresh mushrooms (Agaricus bisporus) by application of hydrogen peroxide and browning inhibitors. J. Food Sci., 66(2), 362–366. https://doi.org/10.1111/j.1365-2621.2001.tb11347.x
- Siwulski, M., Niedzielski, P., Budka, A., Budzyńska, S., Kuczyńska-Kippen, N., Kalač, P., Sobieralski, K., Mleczek, M. (2022). Patterns of changes in the mineral composition of Agaricus bisporus cultivated in Poland between 1977 and 2020. J. Food Compos. Anal., 112, 104660. https://doi.org/10.1016/j.jfca.2022.104660
- Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J.M., Wichers, H.J. (1999). Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol. Rev., 23, 591–614. https://doi.org/10.1016/S0168-6445(99)00023-6
- Szumigaj-Tarnowska, J., Uliński, Z. (2022). Wpływ ilości wody użytej do nawodnienia okrywy na rozwój chorób bakteryjnych pieczarki [The effect of amount of water used to irrigate casing soil on the development of bacterial diseases of the white button]. Post. Ochr. Roślin [Prog. Plant Prot.], 62(3), 167–173. https://dx.doi.org/10.14199/ppp-2022-019
- Ślusarski, C., Uliński Z., Szumigaj-Tarnowska, J. (2012). Wpływ typu ziemi okrywowej na porażenie uprawy pieczarki dwuzarodnikowej przez dwa izolaty grzyba Cladobotryum dendroides [Effect of casing soil type on the infection of the white button mushroom culture with two isolates of Cladobotryum dendroides]. Post. Ochr. Roślin [Prog. Plant Prot.], 52(2), 391-396. https://dx.doi.org/10.14199/ppp-2012-071
- Taparia, T., Hendrix, E., Hendriks, M., Krijger, M., Nijhuis, E., de Boer, W., van der Wolf, J. (2021a). Casing soil microbiome mediates suppression of bacterial blotch of mushrooms during consecutive cultivation cycles. Soil Biol. Biochem., 155, 108161. https: //doi.org/10.1016/j.soilbio.2021.108161
- Taparia, T., Hendrix, E., Hendriks, M., Krijger, M., de Boer, W., van der Wolf, J. (2021b). Comparative studies on the disease prevalence and population dynamics of ginger blotch and brown blotch of button mushrooms. Plant Dis., 105, 542–547. https://doi.org/10.1094/PDIS-06-20-1260-RE
- Wong, W.C., Fletcher, J.T., Unsworth, B.A., Preece, T.F. (1982). A note on ginger blotch, a new bacterial disease of the cultivated mushroom, Agaricus bisporus. J. Appl. Bacteriol., 52, 43–48. https://doi.org/10.1111/j.1365-2672.1982.tb04371.x
- Wong, W.C., Preece, T.F. (1982). Pseudomonas tolaasii in cultivated mushroom (Agaricus bisporus) crops: numbers of the bacterium and symptom development on mushrooms grown in various environments after artificial inoculation. J. Appl. Bacteriol., 53, 87–96. https://doi.org/10.1111/j.1365-2672.1982.tb04737.x
Downloads
Download data is not yet available.
-
Hamdi Zenginbal,
Taki Demir,
Hüsnü Demirsoy,
Ömer Beyhan,
THE GRAFTING SUCCESS OF FOURTEEN GENOTYPES GRAFTED ON THREE DIFFERENT ROOTSTOCKS ON PRODUCTION OF SWEET CHERRY (Prunus avium L.) SAPLING
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 1 (2017)
-
Arkadiusz Przybysz,
Helena Gawrońska,
Łukasz Kowalkowski,
Elżbieta Szalacha,
Stanisław W. Gawroński,
THE BIOSTIMULANT ASAHI SL PROTECTS THE GROWTH OF Arabidopsis thaliana L. PLANTS WHEN CADMIUM IS PRESENT
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 6 (2016)
-
Nezihe Koksal,
Hasan Aslancan,
Said Sadighazadi,
Ebru Kafkas,
CHEMICAL INVESTIGATION ON Rose damascena Mill. VOLATILES; EFFECTS OF STORAGE AND DRYING CONDITIONS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 14 No. 1 (2015)
-
Sanem Bulam,
Mertcan Karadeniz,
Temel Kan Bakir,
Sabri Ünal,
Assessment of total phenolic, total flavonoid, metal contents and antioxidant activities of Trametes versicolor and Laetiporus sulphureus
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 5 (2022)
-
Hanna Piekarska-Boniecka,
Jolanta Zyprych-Walczak,
Marta Rzańska-Wieczorek,
Duong Tran Dinh,
Idzi Siatkowski,
THE NUMBER AND ABUNDANCE OF ICHNEUMONIDAE (HYMENOPTERA, APOCRITA) SUBFAMILIES OCCURRING IN APPLE ORCHARDS AND ON THEIR EDGES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 2 (2018)
-
Krystyna Winiarczyk,
Dominika Czerska ,
Bożena Denisow,
Ewelina Chrzanowska ,
Jacek Pietrusiewicz,
Regenerative potential and its variability in different topophysical zones of Kalanchoe daigremontiana leaves in in vitro culture conditions
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 23 No. 2 (2024)
-
Danuta Kozak,
Marzena Parzymies,
Alicja Świstowska,
Barbara Marcinek,
Bairam Solomon Ismael,
The influence of explants type and orientation on growth and development of Mandevilla sanderi (Hemsl.) Woodson in vitro
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 4 (2019)
-
Amal Bouallègue,
Fatma Souissi,
Issam Nouairi,
Monia Souibgui,
Zouhaier Abbes,
Haythem Mhadhbi,
PHYSIOLOGICAL AND BIOCHEMICALS CHANGES MODULATED BY SEEDS’ PRIMING OF LENTIL (Lens culinaris L.) UNDER SALT STRESS AT GERMINATION STAGE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 5 (2019)
-
HALINA Kurzawińska,
Stanisław Mazur,
Jacek Nawrocki,
MICROORGANISMS COLONIZING THE LEAVES, SHOOTS AND ROOTS OF BOXWOOD (Buxus sempervirens L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 6 (2019)
-
Turgay Kabay,
EFFECTS OF DIFFERENT POTASSIUM DOSES ON GROWTH AND DEVELOPMENT OF DROUGHT-SENSITIVE BEAN PLANTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 4 (2020)
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.