Skip to main navigation menu Skip to main content Skip to site footer

Vol. 24 No. 4 (2025)

Articles

Effect of salinity on the growth and development of ornamental evergreens

DOI: https://doi.org/10.24326/asphc.2025.5509
Submitted: 10 March 2025
Published: 29.08.2025

Abstract

Salt stress is the main problem facing evergreen plants in cities. To a large extent, these plants have stunted growth, lose their ornamental qualities and finally die. The aim of this study was to investigate the response of a selected three ornamental evergreen plants: Pachysandra terminalis, Buxus sempervirens and Hedera helix, to the effects of three different concentrations of sodium chloride (NaCl) – 100, 200 and 300 mM. As a result of a number of experiments, it was found that increased NaCl concentrations resulted in inhibition of plant growth – even more than 90% shorter growth, as in the case of ivy. In addition, the analyses made it possible to conclude that NaCl influences biochemical changes in plant tissues, in particular chlorophyll, soluble proteins or stress parameters such as MDA or free proline. The results obtained allow the validity of the use of selected species in urban greenery in temperate climates to be established.

References

  1. Bekmirzaev, G., Ouddane, B., Beltrão, J., Fujii, Y. (2020). The impact of salt concentration on the mineral nutrition of Tetragonia tetragonioides. Agriculture, 10(6), 238. https://doi.org/10.3390/agriculture10060238
  2. Berwal, M.K., Kumar, R., Prakash, K., Rai, G.K., Hebbar, K.B. (2021). Abiotic stress tolerance mechanisms in plants. 1st ed. CRC Press, Boca Raton, FL, USA, 175–202.
  3. Biczak, R., Pawłowska, B., Feder-Kubis, J. (2016). [Growth inhibition and oxidative stress in plants under the influence of chiral imidazolium ionic liquid with tetrafluoroborate anion]. Chem. Environ. Biotechnol., 19, 35–45 [in Polish].
  4. Boorboori, M.R., Li, J. (2025). The effect of salinity stress on tomato defense mechanisms and exogenous application of salicylic acid, abscisic acid, and melatonin to reduce salinity stress. Soil Sci. Plant Nutr., 71(1), 93–110. https://doi.org/10.1080/00380768.2024.2405834
  5. Bradford, M.M. (1976). A rapid and sensitive metod for the quantification of microgram quantities of protein utilizng the principle of protein dye binding. Anal. Biochem., 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cai, Z.Q., Gao, Q. (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biol., 20(1), 1–15. https://doi.org/10.1186/s12870-020-2279-8
  7. Cerrato, M.D., Mir-Rosselló, P.M., Cortés-Fernández, I., Ribas-Serra, A., Douthe, C., Cardona, C., Sureda A., Flexas J., Gil Vives, L. (2024). Insights on physiological, antioxidant and flowering response to salinity stress of two candidate ornamental species: the native coastal geophytes Pancratium maritimum L. and Eryngium maritimum L. Physiol. Mol. Biol. Plants, 30(9), 1533–1549. https://doi.org/10.1007/s12298-024-01502-0
  8. Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M., De Pascale, S. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrubs. J. Hortic. Sci. Biotechnol., 91, 14–22. https://doi.org/10.1080/14620316.2015.1110988
  9. Corwin, D.L., Yemoto, K, 2020. Salinity. Electrical conductivity and total dissolved solids. Soil Sci. Soc. Am. J., 84(5), 1442–1461. https://doi.org/10.1002/saj2.20154
  10. De Jong, S., Addink, E., Hoogenboom, P., Nijland, W. (2012). The spectral response of Buxus sempervirens to different types of environmental stress. A laboratory experiment. ISPRS J. Photogramm. Remote Sens., 74, 56–65. https://doi.org/10.1016/j.isprsjprs.2012.08.005
  11. Devecchi, M., Remotti, D. (2004). Effect of salts on ornamental ground covers for green urban areas. Acta Hortic., 643, 153–156. https://doi.org/10.17660/ActaHortic.2004.643.18
  12. Dustnazarova, S., Khasanov, A., Khafizova, Z., Davronov, K. (2021). The threat of saline lands, for example, in the Republic of Uzbekistan. E3S Web of Conf. 284, 02002.
  13. El-Zaiat, R.A., El-Sayed, I.M., Taha, L.S., Abrahim, E.A. (2020). Enzyme activity of micropropagated Antigonon leptopus plant under effect of salinity stress. Plant Arch., 20, 3599–3605.
  14. FAO (2023). GSASmap. Global Soil Partnership. Food and Agriculture Organization of the United Nations. Available: https://ww.fao.org/global-soil-partnership/gsasmap/en [date of access: 26.05.2025].
  15. FAO (2024). FAO launches first major global assessment of salt-affected soils in 50 years. Food and Agriculture Organization of the United Nations. Available: https://www.fao.org/newsroom/detail/fao-launches-first-major-global-assessment-of-salt-affected-soils-in-50-years/en [date of access: 26.05.2025].
  16. Goharrizi, K.J., Baghizadeh, A., Kalantar, M., Fatehi, F. (2020a). Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Sci. Hortic., 261, 108970. https://doi.org/10.1016/j.scienta.2019.108970
  17. Goharrizi, K.J., Riahi-Madvar, A., Rezaee, F., Pakzad, R., Bonyad, F.J., Ahsaei, M.G. (2020b). Effect of salinity stress on enzymes’ activity, ions concentration, oxidative stress parameters, biochemical traits, content of sulforaphane, and CYP79F1 gene expression level in Lepidium draba plant. J. Plant Growth Regul., 39, 1075–1094. https://doi.org/10.1007/s00344-019-10047-6
  18. Goth, L. (1991). A simple method for determination of serum catalase activity and revision range. Clin. Chim. Acta., 196, 143–151.
  19. Gupta, B., Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genom., 2014, 701596. https://doi.org/10.1155/2014/701596
  20. Hakim, M.A., Juraimi, A.S., Hanafi, M.M., Ismail, M.R., Selamat, A., Rafii, M.Y., Latif, M.A. (2014). Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes, Biomed Res. Int., 2014, 208584. https://doi.org/10.1155/2014/208584
  21. Hamani, A.K.M., Wang, G., Soothar, M.K., Shen, X., Gao, Y. Qiu, R., Mehmood, F. (2020). Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol., 20, 434. https://doi.org/10.1186/s12870-020-02624-9
  22. Hanin, M., Ebel, C., Ngom, M., Laplaze, L., Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci., 7, 1787. https://doi.org/10.3389/fpls.2016.01787
  23. Hassanpouraghdam, M.B., Mehrabani, L.V., Tzortzakis, N. (2020). Foliar application of nano-zinc and iron affects physiological attributes of Rosmarinus officinalis and quietens NaCl salinity depression. J. Soil Sci. Plant Nutr., 20, 335–345. https://doi.org/10.1007/s42729-019- 00111-1
  24. Hnilickova, H., Kraus, K., Vachova, P., Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde ofrmation, and proline content in Portulaca oleracea L. Plants., 10, 845. https://doi.org/10.3390/plants10050845
  25. Hodges, D.M., Delong, J.M., Forney, C.F, Prange, R.K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta., 207, 604–611. https://doi. org/10.1007/s004250050524
  26. Hussein, H.A.A., Alshammari, S.O. (2022). Cysteine mitigates the effect of NaCl salt toxicity in flax (Linum usitatissimum L.) plants by modulating antioxidant systems. Sci. Rep., 12(1), 11359. https://doi.org/10.1038/s41598-022-14689-7
  27. Jameel, J., Anwar, T., Majeed, S., Qureshi, H., Siddiqi, E.H., Sana, S., Zaman, W., Ali, H.M. (2024). Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms. BMC Plant Biol., 24(1), 128. https://doi.org/10.1186/s12870-024-04836-9
  28. Janz, D., Lautner, S., Wildhagen, H., Behnke, K., Schnitzler, J., Rennenberg, H., Fromm, J., Polle, A. (2012). Salt stress induces the formation of a novel type of ‘pressure wood’ in two Populus species. New Phytol., 194(1), 129–141. https://doi.org/10.1111/j.1469-8137.2011.03975.x
  29. Jha, Y., Subramanian, R.B. (2013). Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil. J. Agr. Res., 73(3), 213–219. https://doi.org/10.4067/s0718-58392013000300002
  30. Ji, X., Tang, J., Zhang, J. (2022). Effects of salt stress on the morphology, growth and physiological parameters of Juglans microcarpa L. seedlings. Plants., 11, 2381. https://doi.org/10.3390/plants11182381
  31. Ju, J.H., Choi, E.Y., Yoon, Y.H. (2016). A pilot study to determine the substrate threshold for heavy metal toxicity in groundcover plants used in urban landscapes. Appl. Ecol. Environ. Res., 14, 59–70. http://dx.doi.org/10.15666/aeer/1404_059070
  32. Khalil, H.A., Hossain, M.S., Rosamah, E., Azli, N.A., Saddon, N., Davoudpoura, Y., Islam, M.N., Dungani, R. (2015). The role of soil properties and it’s interaction towards quality plant fiber. A review. Renew. Sustain. Energy Rev., 43, 1006–1015. https://doi.org/10.1016/j.rser.2014.11.099
  33. Kibria, M.G., Hoque, M.A. (2019). A review on plant responses to soil salinity and amelioration strategies. Open J. Soil Sci., 9, 219–231. https://doi.org/10.4236/ojss.2019.911013
  34. Kidwai, M., Ahmad, I.Z., Chakrabarty, D. (2020). Class III peroxidase. An indispensable enzyme for biotic/ abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep., 39, 1381–1393. https://doi.org/10.1007/s00299-020-02588-y
  35. Kim, Y., Mun, B.G., Khan, A.L., Waqas, M., Kim, H.H., Shahzad, R., Imram, M., Yun, B.W., Lee, I.J. (2018). Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One, 13(3), e0192650. https://doi.org/10.1371/journal.pone.0192650
  36. Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front. Plant Sci., 12, 660409. https://doi.org/10.3389/fpls.2021.660409
  37. Li, W., Li, Q. (2017). Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance. Int. J. Environ. Sci. Nat. Res., 7(3), 555714. https://doi.org/10.19080/IJESNR.2017.07.555714
  38. Lichtenthaler, H.K., Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b leaf extracts in different solvents. Biochem. Soc. Trans., 603, 591–592.
  39. Lu, Y., Zeng, F., Li, X., Zhang, B. (2021). Physiological changes of three woody plants exposed to progressive salt stress. Photosynthetica, 59, 171–184. https://doi.org/10.32615/ps.2021.007
  40. Marosz, A. (2004). Effect of soil salinity on nutrient uptake, growth, and decorative value of four ground cover shrubs. J. Plant Nutr., 27(6), 977–989. https://doi.org/10.1081/PLN-120037531
  41. Marosz, A. (2011). Effect of green waste compost and mycorrhizal fungi on calcium, potassium, and sodium uptake of woody plants grown under salt stress. Water Air Soil Pollut., 223, 787–800. https://doi.org/10.1007/s11270-011-0902-x
  42. Parvaiz, A., Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ., 54(3), 89–99. https://doi.org/10.17221/2774-PSE
  43. Passioura, J.B. (1991). Soil structure and plant growth. Aust. J. Soil Res., 29(6), 717–728. https://doi.org/10.1071/SR9910717
  44. Paudel, A., Sun, Y. (2024). Effect of salt stress on the growth, physiology, and mineral nutrients of two penstemon species. HortSci., 59(2), 209–219. https://doi.org/10.21273/HORTSCI17409-23
  45. Rahneshan, Z., Nasibi, F., Moghadam, A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact., 13, 73– 82. https://doi.org/10.1080/17429145.2018.1424355
  46. Razzaq, A., Ali, A., Safdar, L.B., Zafar, M.M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. J Food Sci. Jan., 85(1), 14–20. https://doi.org/10.1111/1750-3841.14983
  47. Roeder, M., Meyer, K. (2022). English Ivy (Hedera helix) is fast, but Ash (Fraxinus excelsior) too. Decomposition of English Ivy litter compared to four common host trees. A multisite citizen sciences project. Acta Oecol., 115, 103832. https://doi.org/10.1016/j.actao.2022.103832
  48. Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Sarwar, M.I. (2019). A review. Impact of salinity on plant growth. Nat. Sci., 1, 34–40. https://doi.org/10.7537/marsnsj170119.06
  49. Sedaghathoor, S., Zare, S.K.A. (2019). Interactive effects of salinity and drought stresses on the growth parameters and nitrogen content of three hedge shrubs. Cogent. Environ. Sci., 5(1). https://doi.org/10.1080/23311843.2019.1682106
  50. Shahid, M., Sarkhosh, A., Khan, N., Balal, R., Ali, S., Rossi, L., Gómez, C., Mattson, N., Jatoi, W., García-Sánchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10, 938. https://doi.org/10.3390/agronomy10070938
  51. Siedlecka, M. (2010). Skrypt do ćwiczeń z fizjologii roślin [Script for plant physiology exercises]. Uniwersytet Warszawski [Warsaw University], Zakład Molekularnej Fizjologii Roślin [Department of Molecular Plant Physiology], Warszawa, 28–29 [in Polish].
  52. Simkin, A.J., Kapoor, L., Doss, C.G.P., Hofmann, T.A., Lawson, T., Ramamoorthy, S. (2022). The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth. Res., 152(1), 23–42. https://doi.org/10.1007/s11120-021-00892-6
  53. Smirnoff, N., Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytol., 221(3), 1197–1214. https://doi.org/10.1111/nph.15488
  54. Thaker, P., Brahmbhatt, N., Shah, K. (2021). A review: impact of soil salinity on ecological, agricultural and socio-economic concerns. Int. J. Adv. Res., 9, 979–986. http://dx.doi.org/10.21474/IJAR01/13200
  55. Toczko, M., Grzelińska, A. (2001). Materiały do ćwiczeń z biochemii [Biochemistry exercise materials]. Wydawnictwo SGGW, Warszawa, 99–101 [in Polish].
  56. Toscano, S., Branca, F., Romano, D., Ferrante A. (2020). An evaluation of different parameters to screen ornamental shrubs for salt spray tolerance. Biology, 9, 250. https://doi.org/10.3390/biology9090250
  57. Wu, L., Guo, X., Hunter, K., Zagory, E.M., Waters, R., Brown, J. (2001). Studies of salt tolerance of landscape plant species and california native grasses for recycled water irrigation. Slosson Report, 1–14. Available: http://slosson.ucdavis.edu/newsletters/Wu_200129031.pdf [date of access: 8.06.2024].
  58. Xu, N., Liu, S., Lu, Z., Pang, S., Wang, L., Wang, L., Li, W. (2020). Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants, 9, 1162. https://doi.org/10.3390/plants9091162
  59. Yan, S., Chong, P., Zhao, M. (2022). Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings, Plant Signal. Behav., 17(1), 2031782. https://doi.org/10.1080/15592324.2022.2031782
  60. Yilmaz, S., Temizgül, R., Yürürdurmaz, C., Kaplan, M. (2020). Oxidant and antioxidant enzyme response of redbine sweet sorghum under NaCl salinity stress. Bioagro, 32(1), 31–38.
  61. Yu, X., Her, Y., Chang, A., Song, J.H., Campoverde, E.V., Schaffer, B. (2021). Assessing the effects of irrigation water salinity on two ornamental crops by remote spectral imaging. Agronomy, 11, 375. https://doi.org/10.3390/agronomy11020375
  62. Zhang, H., Zhu, J., Gong, Z., Zhu, J.K. (2022). Abiotic stress responses in plants. Nat. Rev. Genet., 23(2), 104–119. https://doi.org/10.1038/s41576-021-00413-0

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.