Skip to main navigation menu Skip to main content Skip to site footer

ONLINE FIRST

Articles

Effects of bacterial and fungal bio-fertilizers on yield and quality of soilless-grown cluster tomato

DOI: https://doi.org/10.24326/asphc.2025.5522
Submitted: 26 March 2025
Published: 12.11.2025

Abstract

This study evaluated the effects of bacterial (Arthrobacter globiformis, Streptomyces griseus) and fungal (Aspergillus oryzae) preparations on the growth, yield, and fruit quality of cluster tomato (Solanum lycopersicum L. cv. Cletego F1) grown in cocopeat substrate under greenhouse conditions. Treatments significantly improved plant growth, cluster number, and yield compared with the control, with Streptomyces griseus producing the highest yield (58.6 t da–¹) and superior fruit quality (SSC = 4.85%, acidity = 0.28 g citric acid 100 mL⁻¹). The control recorded the highest vitamin C content. The study concludes that microbial inoculation enhances yield and quality in soilless tomato cultivation, supporting eco-friendly and sustainable production systems.

References

  1. Abo-Elyousr, K.A.M., Ibrahim, O.H.M., Al-Qurashi, A.D., Mousa, M.A.A., Saad, M.M. (2022). Biocontrol potential of endophytic fungi for the eco-friendly management of root rot of Cuminum cyminum caused by Fusarium solani. Agronomy, 12(11), 2612, https://doi.org/10.3390/agronomy12112612
  2. Abo-Elyousr, K.A.M., Sallam, N.M.A., Mousa, M.A.A., Imran, M., Abdel-Rahim, I.R. (2024). Synergistic effect of Bacillus subtilis and benzothiadiazole (Bion®) on the suppression of Fusarium oxysporum and the enhancement of disease resistance in Capsicum annuum. J. Plant Pathol., 106(1), 127–138, https://doi.org/10.1007/s42161-023-01527-6
  3. Aktaş, H., Hor, Y. (2024). The effect of mycorrhiza and Trichoderma inoculation on plant growth, yield, and fruit quality in soilless tomato (Solanum lycopersicum) cultivation. AgriTR Sci., 6(1), 19–32.
  4. Anzalone, A., Mosca, A., Dimaria, G., Nicotra, D., Tessitori, M., Privitera, G.F., Pulvirenti, A., Leonardi, C., Catara, V. (2022). Soil and soilless tomato cultivation promote different microbial communities that provide new models for future crop interventions. Int. J. Mol. Sci. 23(15), 8820, https://doi.org/10.3390/ijms23158820
  5. AOAC (1995). Official methods of analysis. 16th ed. Washington (DC), USA, Assoc. Official Analyt. Chem., 679.
  6. Barber, N.J., Barber, J. (2002). Lycopene and prostate cancer. Prostate cancer and prostatic diseases, 5(1), 6–12, https://doi.org/10.1038/sj.pcan.4500560
  7. Bozköylü, A., Daşgan, H.Y. (2010). Comparison of organic and chemical nutrition in soilless grown tomato. TÜBAV Bilim 3(2), 174–181.
  8. Castro-Restrepo, D., Dominguez, M.I., Gaviria-Gutiérrez, B., Osorio, E., Sierra, K. (2022). Biotization of endophytes Trichoderma asperellum and Bacillus subtilis in Mentha spicata microplants to promote growth, pathogen tolerance and specialized plant metabolites. Plants, 11(11), 1474, https://doi.org/10.3390/plants11111474
  9. Cela, F., Carmassi, G., Najar, B., Taglieri, I., Sanmartin, C., Cialli, S., Ceccanti, C., Guidi, L., Venturi, F., Incrocci, L. (2024). Salinity impact on yield, quality and sensory profile of ‘pisanello’ tuscan local tomato (Solanum lycopersicum L.) in closed soilless cultivation. Horticulturae, 10(6), 570, https://doi.org/10.3390/horticulturae10060570
  10. Dasgan, H.Y., Yilmaz, M., Dere, S., Ikiz, B., Gruda, N.S. (2023). Bio-fertilizers reduced the need for mineral fertilizers in soilless-grown capia pepper. Horticulturae, 9(2), 188, https://doi.org/10.3390/horticulturae9020188
  11. Erdal, İ., Aktaş, H., Yaylacı, C., Türkan, Ş.A., Aydın, G., Hor, Y. (2024). Effects of peat based substrate combinations on mineral nutrition, growth and yield of tomato. J. Plant Nutr., (47)1, 30–48, https://doi.org/10.1080/01904167.2023.2265969
  12. FAO (2024). Crops and livestock products. Available: https://www.fao.org/faostat/en/#data/QCL [date of access:15.10.2024].
  13. Frolking, S., Roulet, N.T., Moore, T.R., Richard, P.J.H., Lavoie, M. Muller, S.D. (2001). Modeling northern peatland decomposition and peat accumulation. Ecosystems, 4(5), 479–498, https://doi.org/10.1007/s10021-001-0105-1
  14. Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., Nain, L. (2021). PGPR mediated alterations in root traits: way toward sustainable crop production. Front. Sustain. Food Sys., 4, 618230, https://doi.org/10.3389/fsufs.2020.618230
  15. Gulia, U., Shukla, J., Nishanth, S., Kokila, V., Bharti, A., Kumar Singh, A., Singh Shivay, Y., Prasanna, R. (2022). Fortifying nursery soil-less media with cyanobacteria for enhancing the growth of tomato. S. Afr. J. Bot., 146, 564–572, https://doi.org/10.1016/j.sajb.2021.11.034
  16. Hoagland, D.R., Arnon, D.I. (1938). The water culture method for growing plants without soil. California Agric. Exp. Station Circul., 347, 32.
  17. Imran, M., Abo-Elyousr, K.A.M., Mousa, M.A., Saad, M.M. (2022). Screening and biocontrol evaluation of indigenous native Trichoderma spp. against early blight disease and their field assessment to alleviate natural infection. Egyptian J. Biol. Pest Control, 32(40), 1–10, https://doi.org/10.1186/s41938-022-00544-4
  18. Imran, M., Abo-Elyousr, K.A.M., Mousa, M.A.A., Saad, M.M. (2023) Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. Front. Plant Sci. 14, 1192818, https://doi.org/10.3389/fpls.2023.1192818
  19. Jacobsen, B.J., Zidack, N.K., Larson, B.J. (2004). The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology, 94(11), 1272–1275, https://doi.org/10.1094/phyto.2004.94.11.1272
  20. Kartal, H., Geboloğlu, N. (2023). Evaluation of composts from agro industrial wastes as an alternative growing media against cocopeat for soilless tomato cultivation. Turkish J. Agric. – Food Sci. Technol., 11(3), 454–459, https://doi.org/10.24925/turjaf.v11i3.454-459.5703
  21. Kılıç, O., Çopur, U.Ö., Görtay, Ş. (1991). Fruit and vegetable processing technology application guide. Uludağ Üniv. Ziraat Fakült. Yayınları, Ders Notları, 7, 147.
  22. Mahapatra, D.M., Satapathy, K.C., Panda, B. (2022). Biofertilizers and nanofertilizers for sustainable agriculture. Phycoprospects and challenges. Sci. Total Environ., 803, 149990, https://doi.org/10.1016/j.scitotenv.2021.149990
  23. Masquelier, S., Sozzi, T., Bouvet, J.C., Bésiers, J., Deogratias, J.M. (2022). Conception and development of recycled raw materials (coconut fiber and bagasse)-based substrates enriched with soil microorganisms (Arbuscular Mycorrhizal Fungi, Trichoderma spp. and Pseudomonas spp.) for the soilless cultivation of tomato (S. lycopersicum). Agronomy, 12(4), 767, https://doi.org/10.3390/agronomy12040767
  24. Mazrou, Y.S., Makhlouf, A.H., Elseehy, M.M., Awad, M.F., Hassan, M.M. (2020). Antagonistic activity and molecular characterization of biological control agent Trichoderma harzianum from Saudi Arabia. Egyptian J. Biol. Pest Control. 30(1), 1–8, https://doi.org/10.1186/s41938-020-0207-8
  25. Mendes, R., Garbeva, P., Raaijmakers, J.M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev., 37(5), 634–663, https://doi.org/10.1111/1574-6976.12028
  26. Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van Der Voort, M., Schneider, J.H.M., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A.H.M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1092–1100, https://doi.org/10.1126/science.1203980
  27. Mourouzidou, S., Ntinas, G.K., Tsaballa, A., Monokrousos, N. (2023). Introducing the power of plant growth promoting microorganisms in soilless systems: a promising alternative for sustainable agriculture. Sustainability, 15(7), 5959, https://doi.org/10.3390/su15075959
  28. Narware, J., Singh, S.P., Manzar, N., Kashyap, A.S. (2023). Biogenic synthesis, characterization, and evaluation of synthesized nanoparticles against the pathogenic fungus Alternaria solani. Front. Microbiol. 14, https://doi.org/10.3389/fmicb.2023.1159251
  29. Orta-Guzmán, V.N., Lois-Correa, J.A., Domínguez-Crespo, M.A., Pineda-Pineda, J., Torres-Huerta, A.M., Rodríguez-Salazar, A.E., Licona-Aguilar, Á.I. (2021). Evaluation of sugarcane agro industrial wastes as substrate in soilless cultivation of tomato (Solanum lycopersicum L.): effect of substrate composition on yield production. Agronomy, 11(2), 206, https://doi.org/10.3390/agronomy11020206
  30. Öztekin, G.B., Tüzel, Y., Tüzel, H. (2017). Effects of silicon to salinity stress on soilless tomato grown in greenhouse. Acad. J. Agric., 6(Spec. Iss.), 243–256.
  31. Rao, A.V., Agarwal, S. (2000). Role of antioxidant lycopene in cancer and heart disease. J. Am. College Nutr., 19, 563–569, https://doi.org/10.1080/07315724.2000.10718953
  32. Sajid, M., Butt, S.J., Haq, Z.U., Naseem, I., Iqbal, A., Khan, Q.A., Ali, H. (2023). Effects of organic substrates and effective microorganisms (EM) on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse condition. Pure Appl. Biol., 12(1), 116–127, http://dx.doi.org/10.19045/bspab.2023.120013
  33. Setiawati, M.R., Afrilandha, N., Hindersah, R., Suryatmana, P., Fitriatin, B.N., Kamaluddin, N.N. (2023). The effect of beneficial microorganism as biofertilizer application in hydroponic-grown tomato. Sains Tanah J. Soil Sci. Agroclimatol., 20(1), 66–77, https://dx.doi.org/10.20961/stjssa.v20i1.63877
  34. Stracquadanio, C., Quiles, J.M., Meca, G., Cacciola, S.O. (2020). Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. J. Fungi. 6(4), 263, https://doi.org/10.3390/jof6040263
  35. Toprak, E., Gül, A. (2013). Do soilless media effect yield and quality of tomatoes? Res. BJ. Agric. Sci. 6(2), 41–47.
  36. TÜİK, Türkiye İstatistik Kurumu (2024). Vegetables Balance Tables. Available: https://data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111 [date of access: 15.10.2024].
  37. Tuxun, A., Xiang, Y., Shao, Y., Son, J.E., Yamada, M., Yamada, S., Tagawa, K., Baiyin, B., Yang, Q. (2025). Soilless cultivation: precise nutrient provision and growth environment regulation under different substrates. Plants, 14(14), 2203, https://doi.org/10.3390/plants14142203
  38. Tzortzakis, N.G., Economakis, D. (2008). Impacts of the substrate medium on tomato yield and fruit quality in soilless cultivation. Hort. Sci., 35(2), 83–89, https://doi.org/10.17221/642-HORTSCI
  39. Wang, Q.Y., Zhao, M.R., Wang, J.Q., Hu, B.Y., Chen, Q.J., Qin, Y., Zhang, G.Q. (2023). Effects of microbial inoculants on agronomic characters, physicochemical. Sci. Hortic., 320, 112202, https://doi.org/10.1016/j.scienta.2023.112202
  40. Yörük, E., Eren, E., Hazneci, E., Özer, H., Gülser, C. (2024). Potential use of postharvest tomato wastes as a growing media in soilless culture. Compost Sci. Util., 31(1–2), 1–8, https://doi.org/10.1080/1065657X.2023.2287646
  41. Zhang, X., Khalid, M., Wang, R., Chi, Y., Zhang, D., Chu, S., Yang, X., Zhou, P. (2023). Enhancing lettuce growth and rhizosphere microbial community with Bacillus safensis YM1 compost in soilless cultivation. An agricultural approach for kitchen waste utilization. Sci. Hortic., 321, 112345, https://doi.org/10.1016/j.scienta.2023.112345

Downloads

Download data is not yet available.

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.