Abstract
This study evaluated the effects of bacterial (Arthrobacter globiformis, Streptomyces griseus) and fungal (Aspergillus oryzae) preparations on the growth, yield, and fruit quality of cluster tomato (Solanum lycopersicum L. cv. Cletego F1) grown in cocopeat substrate under greenhouse conditions. Treatments significantly improved plant growth, cluster number, and yield compared with the control, with Streptomyces griseus producing the highest yield (58.6 t da–¹) and superior fruit quality (SSC = 4.85%, acidity = 0.28 g citric acid 100 mL⁻¹). The control recorded the highest vitamin C content. The study concludes that microbial inoculation enhances yield and quality in soilless tomato cultivation, supporting eco-friendly and sustainable production systems.
References
- Abo-Elyousr, K.A.M., Ibrahim, O.H.M., Al-Qurashi, A.D., Mousa, M.A.A., Saad, M.M. (2022). Biocontrol potential of endophytic fungi for the eco-friendly management of root rot of Cuminum cyminum caused by Fusarium solani. Agronomy, 12(11), 2612, https://doi.org/10.3390/agronomy12112612
- Abo-Elyousr, K.A.M., Sallam, N.M.A., Mousa, M.A.A., Imran, M., Abdel-Rahim, I.R. (2024). Synergistic effect of Bacillus subtilis and benzothiadiazole (Bion®) on the suppression of Fusarium oxysporum and the enhancement of disease resistance in Capsicum annuum. J. Plant Pathol., 106(1), 127–138, https://doi.org/10.1007/s42161-023-01527-6
- Aktaş, H., Hor, Y. (2024). The effect of mycorrhiza and Trichoderma inoculation on plant growth, yield, and fruit quality in soilless tomato (Solanum lycopersicum) cultivation. AgriTR Sci., 6(1), 19–32.
- Anzalone, A., Mosca, A., Dimaria, G., Nicotra, D., Tessitori, M., Privitera, G.F., Pulvirenti, A., Leonardi, C., Catara, V. (2022). Soil and soilless tomato cultivation promote different microbial communities that provide new models for future crop interventions. Int. J. Mol. Sci. 23(15), 8820, https://doi.org/10.3390/ijms23158820
- AOAC (1995). Official methods of analysis. 16th ed. Washington (DC), USA, Assoc. Official Analyt. Chem., 679.
- Barber, N.J., Barber, J. (2002). Lycopene and prostate cancer. Prostate cancer and prostatic diseases, 5(1), 6–12, https://doi.org/10.1038/sj.pcan.4500560
- Bozköylü, A., Daşgan, H.Y. (2010). Comparison of organic and chemical nutrition in soilless grown tomato. TÜBAV Bilim 3(2), 174–181.
- Castro-Restrepo, D., Dominguez, M.I., Gaviria-Gutiérrez, B., Osorio, E., Sierra, K. (2022). Biotization of endophytes Trichoderma asperellum and Bacillus subtilis in Mentha spicata microplants to promote growth, pathogen tolerance and specialized plant metabolites. Plants, 11(11), 1474, https://doi.org/10.3390/plants11111474
- Cela, F., Carmassi, G., Najar, B., Taglieri, I., Sanmartin, C., Cialli, S., Ceccanti, C., Guidi, L., Venturi, F., Incrocci, L. (2024). Salinity impact on yield, quality and sensory profile of ‘pisanello’ tuscan local tomato (Solanum lycopersicum L.) in closed soilless cultivation. Horticulturae, 10(6), 570, https://doi.org/10.3390/horticulturae10060570
- Dasgan, H.Y., Yilmaz, M., Dere, S., Ikiz, B., Gruda, N.S. (2023). Bio-fertilizers reduced the need for mineral fertilizers in soilless-grown capia pepper. Horticulturae, 9(2), 188, https://doi.org/10.3390/horticulturae9020188
- Erdal, İ., Aktaş, H., Yaylacı, C., Türkan, Ş.A., Aydın, G., Hor, Y. (2024). Effects of peat based substrate combinations on mineral nutrition, growth and yield of tomato. J. Plant Nutr., (47)1, 30–48, https://doi.org/10.1080/01904167.2023.2265969
- FAO (2024). Crops and livestock products. Available: https://www.fao.org/faostat/en/#data/QCL [date of access:15.10.2024].
- Frolking, S., Roulet, N.T., Moore, T.R., Richard, P.J.H., Lavoie, M. Muller, S.D. (2001). Modeling northern peatland decomposition and peat accumulation. Ecosystems, 4(5), 479–498, https://doi.org/10.1007/s10021-001-0105-1
- Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., Nain, L. (2021). PGPR mediated alterations in root traits: way toward sustainable crop production. Front. Sustain. Food Sys., 4, 618230, https://doi.org/10.3389/fsufs.2020.618230
- Gulia, U., Shukla, J., Nishanth, S., Kokila, V., Bharti, A., Kumar Singh, A., Singh Shivay, Y., Prasanna, R. (2022). Fortifying nursery soil-less media with cyanobacteria for enhancing the growth of tomato. S. Afr. J. Bot., 146, 564–572, https://doi.org/10.1016/j.sajb.2021.11.034
- Hoagland, D.R., Arnon, D.I. (1938). The water culture method for growing plants without soil. California Agric. Exp. Station Circul., 347, 32.
- Imran, M., Abo-Elyousr, K.A.M., Mousa, M.A., Saad, M.M. (2022). Screening and biocontrol evaluation of indigenous native Trichoderma spp. against early blight disease and their field assessment to alleviate natural infection. Egyptian J. Biol. Pest Control, 32(40), 1–10, https://doi.org/10.1186/s41938-022-00544-4
- Imran, M., Abo-Elyousr, K.A.M., Mousa, M.A.A., Saad, M.M. (2023) Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. Front. Plant Sci. 14, 1192818, https://doi.org/10.3389/fpls.2023.1192818
- Jacobsen, B.J., Zidack, N.K., Larson, B.J. (2004). The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology, 94(11), 1272–1275, https://doi.org/10.1094/phyto.2004.94.11.1272
- Kartal, H., Geboloğlu, N. (2023). Evaluation of composts from agro industrial wastes as an alternative growing media against cocopeat for soilless tomato cultivation. Turkish J. Agric. – Food Sci. Technol., 11(3), 454–459, https://doi.org/10.24925/turjaf.v11i3.454-459.5703
- Kılıç, O., Çopur, U.Ö., Görtay, Ş. (1991). Fruit and vegetable processing technology application guide. Uludağ Üniv. Ziraat Fakült. Yayınları, Ders Notları, 7, 147.
- Mahapatra, D.M., Satapathy, K.C., Panda, B. (2022). Biofertilizers and nanofertilizers for sustainable agriculture. Phycoprospects and challenges. Sci. Total Environ., 803, 149990, https://doi.org/10.1016/j.scitotenv.2021.149990
- Masquelier, S., Sozzi, T., Bouvet, J.C., Bésiers, J., Deogratias, J.M. (2022). Conception and development of recycled raw materials (coconut fiber and bagasse)-based substrates enriched with soil microorganisms (Arbuscular Mycorrhizal Fungi, Trichoderma spp. and Pseudomonas spp.) for the soilless cultivation of tomato (S. lycopersicum). Agronomy, 12(4), 767, https://doi.org/10.3390/agronomy12040767
- Mazrou, Y.S., Makhlouf, A.H., Elseehy, M.M., Awad, M.F., Hassan, M.M. (2020). Antagonistic activity and molecular characterization of biological control agent Trichoderma harzianum from Saudi Arabia. Egyptian J. Biol. Pest Control. 30(1), 1–8, https://doi.org/10.1186/s41938-020-0207-8
- Mendes, R., Garbeva, P., Raaijmakers, J.M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev., 37(5), 634–663, https://doi.org/10.1111/1574-6976.12028
- Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van Der Voort, M., Schneider, J.H.M., Piceno, Y.M., DeSantis, T.Z., Andersen, G.L., Bakker, P.A.H.M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1092–1100, https://doi.org/10.1126/science.1203980
- Mourouzidou, S., Ntinas, G.K., Tsaballa, A., Monokrousos, N. (2023). Introducing the power of plant growth promoting microorganisms in soilless systems: a promising alternative for sustainable agriculture. Sustainability, 15(7), 5959, https://doi.org/10.3390/su15075959
- Narware, J., Singh, S.P., Manzar, N., Kashyap, A.S. (2023). Biogenic synthesis, characterization, and evaluation of synthesized nanoparticles against the pathogenic fungus Alternaria solani. Front. Microbiol. 14, https://doi.org/10.3389/fmicb.2023.1159251
- Orta-Guzmán, V.N., Lois-Correa, J.A., Domínguez-Crespo, M.A., Pineda-Pineda, J., Torres-Huerta, A.M., Rodríguez-Salazar, A.E., Licona-Aguilar, Á.I. (2021). Evaluation of sugarcane agro industrial wastes as substrate in soilless cultivation of tomato (Solanum lycopersicum L.): effect of substrate composition on yield production. Agronomy, 11(2), 206, https://doi.org/10.3390/agronomy11020206
- Öztekin, G.B., Tüzel, Y., Tüzel, H. (2017). Effects of silicon to salinity stress on soilless tomato grown in greenhouse. Acad. J. Agric., 6(Spec. Iss.), 243–256.
- Rao, A.V., Agarwal, S. (2000). Role of antioxidant lycopene in cancer and heart disease. J. Am. College Nutr., 19, 563–569, https://doi.org/10.1080/07315724.2000.10718953
- Sajid, M., Butt, S.J., Haq, Z.U., Naseem, I., Iqbal, A., Khan, Q.A., Ali, H. (2023). Effects of organic substrates and effective microorganisms (EM) on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse condition. Pure Appl. Biol., 12(1), 116–127, http://dx.doi.org/10.19045/bspab.2023.120013
- Setiawati, M.R., Afrilandha, N., Hindersah, R., Suryatmana, P., Fitriatin, B.N., Kamaluddin, N.N. (2023). The effect of beneficial microorganism as biofertilizer application in hydroponic-grown tomato. Sains Tanah J. Soil Sci. Agroclimatol., 20(1), 66–77, https://dx.doi.org/10.20961/stjssa.v20i1.63877
- Stracquadanio, C., Quiles, J.M., Meca, G., Cacciola, S.O. (2020). Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. J. Fungi. 6(4), 263, https://doi.org/10.3390/jof6040263
- Toprak, E., Gül, A. (2013). Do soilless media effect yield and quality of tomatoes? Res. BJ. Agric. Sci. 6(2), 41–47.
- TÜİK, Türkiye İstatistik Kurumu (2024). Vegetables Balance Tables. Available: https://data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111 [date of access: 15.10.2024].
- Tuxun, A., Xiang, Y., Shao, Y., Son, J.E., Yamada, M., Yamada, S., Tagawa, K., Baiyin, B., Yang, Q. (2025). Soilless cultivation: precise nutrient provision and growth environment regulation under different substrates. Plants, 14(14), 2203, https://doi.org/10.3390/plants14142203
- Tzortzakis, N.G., Economakis, D. (2008). Impacts of the substrate medium on tomato yield and fruit quality in soilless cultivation. Hort. Sci., 35(2), 83–89, https://doi.org/10.17221/642-HORTSCI
- Wang, Q.Y., Zhao, M.R., Wang, J.Q., Hu, B.Y., Chen, Q.J., Qin, Y., Zhang, G.Q. (2023). Effects of microbial inoculants on agronomic characters, physicochemical. Sci. Hortic., 320, 112202, https://doi.org/10.1016/j.scienta.2023.112202
- Yörük, E., Eren, E., Hazneci, E., Özer, H., Gülser, C. (2024). Potential use of postharvest tomato wastes as a growing media in soilless culture. Compost Sci. Util., 31(1–2), 1–8, https://doi.org/10.1080/1065657X.2023.2287646
- Zhang, X., Khalid, M., Wang, R., Chi, Y., Zhang, D., Chu, S., Yang, X., Zhou, P. (2023). Enhancing lettuce growth and rhizosphere microbial community with Bacillus safensis YM1 compost in soilless cultivation. An agricultural approach for kitchen waste utilization. Sci. Hortic., 321, 112345, https://doi.org/10.1016/j.scienta.2023.112345
Downloads
Download data is not yet available.
-
Sylwester Smoleń,
Łukasz Skoczylas,
Roksana Rakoczy,
Iwona Ledwożyw-Smoleń,
Aneta Kopeć,
Ewa Piątkowska,
Renata Bieżanowska-Kopeć,
Mirosław Pysz,
Aneta Koronowicz,
Joanna Kapusta-Duch,
Włodzimierz Sady,
MINERAL COMPOSITION OF FIELD-GROWN LETTUCE (Lactuca sativa L.) DEPENDING ON THE DIVERSIFIED FERTILIZATION WITH IODINE AND SELENIUM COMPOUNDS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 14 No. 6 (2015)
-
Said Saleh,
Guangmin Liu,
Mingchi Liu,
Wei Liu,
Nazim Gruda,
Hongju He,
REDUCING THE SALINITY IMPACT ON SOILLESS CULTURE OF TOMATOES USING SUPPLEMENTAL CA AND FOLIAR MICRONUTRIENTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 3 (2019)
-
Mortaza Hajyzadeh,
Mehmet Ugur Yildirim,
Sam Mokhtarzadeh,
Ercument Osman Sarihan,
Ercument Osman Sarihan,
Khalid Mahmood Khawar,
Breaking of seed dormancy in Iris suaveolens Boiss. et Reuter under in vitro conditions
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 4 (2019)
-
Judita Černiauskienė,
Jurgita Kulaitienė,
Elvyra Jarienė,
Honorata Danilčenko,
Sandra Žaldarienė Žaldarienė,
Maria Jeznach,
RELATIONSHIP BETWEEN HARVESTING TIME AND CARBOHYDRATE CONTENT OF JERUSALEM ARTICHOKE (Helian-thus tuberosus L.) TUBERS
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 17 No. 3 (2018)
-
Aboubaker H. Brayek,
Ranko R. Čabilovski,
Klara M. Petković,
Nenad P. Magazin,
Dragan B. Čakmak,
Maja S. Manojlovic,
EFFICIENCY OF DIFFERENT METHODS AND FORMS OF MICROELEMENTS APPLICATION IN FUNCTION OF N FERTILIZER IN APPLE TREES
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 5 (2019)
-
Piotr Siwek,
Iwona Domagała-Świątkiewicz,
Andrzej Kalisz,
Piotr Bucki,
MICROCLIMATIC CONDITIONS AND PHYSICO-CHEMICAL PROPERTIES OF SOIL IN INTENSIVE ECOLOGICAL VEGETABLE CROP ROTATION IN HIGH TUNNEL
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 3 (2020)
-
Ramūnas Sirtautas,
Giedrė Samuolienė,
Aušra Brazaitytė,
Jurga Sakalauskaite,
Sandra Sakalauskienė,
Akvilė Viršilė,
Julė Jankauskienė,
Viktorija Vastakaite,
Pavelas Duchovskis,
IMPACT OF CO2 ON QUALITY OF BABY LETTUCE GROWN UNDER OPTIMIZED LIGHT SPECTRUM
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 13 No. 2 (2014)
-
Burhan Ozturk,
Kenan Yıldız,
Halil Erdem,
Orhan Karakaya,
Ahmet Ozturk,
AMINOETHOXYVINYLGLYCINE AND FOLIAR ZINC TREATMENTS PLAY A KEY ROLE IN PRE-HARVEST DROPS AND FRUIT QUALITY ATTRIBUTES OF ‘WILLIAM’S PRIDE’ APPLE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 2 (2019)
-
Dragan Milatović,
Dejan Đurović,
Gordan Zec,
Aleksandar Radović,
Đorđe Boškov,
EVALUATION OF LATE PLUM CULTIVARS IN THE REGION OF BELGRADE (SERBIA)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 18 No. 1 (2019)
-
Ebru Kafkas,
Hamide Gubbuk,
Hasan Pınar,
Serkan Selli,
Esma Gunes,
THE IMPACT OF OPEN-FIELD AND PROTECTED CULTIVATION ON BIOCHEMICAL CHARACTERISTICS OF BANANAS (Musa spp. AAA)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 3 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.