Skip to main navigation menu Skip to main content Skip to site footer

Vol. 22 No. 3 (2023)

Articles

Development of the male and female gametophyte, fertilization, and assessment of germination and regulation of dormancy in Iris aphylla L. seeds

DOI: https://doi.org/10.24326/asphc.2023.5070
Submitted: February 7, 2023
Published: 2023-06-30

Abstract

The observations of fruiting and formation of offspring through generative propagation presented in this study were aimed at determination of propagation potential in Iris aphylla L. The low percentage of germinating seeds largely limits its generative reproduction. The germination tests confirmed deep dormancy of the Iris aphylla seeds. The dormancy was disrupted by isolation of embryos from seeds, which were further cultivated in vitro. The germination of isolated embryos proved the localization of endogenous inhibitors of germinating seeds of I. aphylla in the endosperm. The comparison of phytohormonal profiles of seeds, endosperm and embryos of I. aphylla and Iris sibirica, i.e. a species with a high percentage of germinating seed, revealed that the deep dormancy of I. aphylla seeds was associated with the balance between abscisic acid and gibberellins (ABA/GA), a significant predominance of ABA and a massive accumulation of salicylic acid. Isolation of embryos from seeds and their germination in growing medium in vitro is recommended as the most efficient method for I. aphylla propagation. Results of this study can be applied in conservation efforts of this attractive and important native species.

References

  1. Acebedo, M.M., Lavee, S., Linan, J., Troncoso, A. (1997). In vitro germination of embryos for speeding up seedling development in olive breeding programmes. Sci. Hortic. 69(3–4), 207–215. https://doi.org/10.1016/S0304-4238(97)00004-6 DOI: https://doi.org/10.1016/S0304-4238(97)00004-6
  2. Arditti, J., Pray, T.R. (1969). Dormancy factors in iris Iridaceae seeds. Amer. J. Bot., 563, 254–259. https://doi.org/10.1002/j.1537-2197. 1969.tb07531.x DOI: https://doi.org/10.1002/j.1537-2197.1969.tb07531.x
  3. Bewley, J.D. Black, M. (1994). Seeds physiology of development and germination, 3rd ed. Plenum Press, New York, pp. 445. Available: https://link.springer.com/chapter/10.1007/978-1-4899-1002-8_1
  4. Blumenthal, A., Lerner, H.R., Werker, E., Poljakoff-Mayber, A. (1986). Germination preventing mechanisms in Iris seeds. Ann. Bot., 584, 551–561. https://doi.org/10.1093/annbot/58.4.551 DOI: https://doi.org/10.1093/annbot/58.4.551
  5. Coops, H., van der Velde, G. (1995). Seed dispersal, germination and seedling growth of six helophyte species in relation to water‐level zonation. Freshwater Biol., 341, 13–20. https://doi.org/10.1111/j.1365-2427.1995.tb00418.x DOI: https://doi.org/10.1111/j.1365-2427.1995.tb00418.x
  6. Dobrev, P.I., Kamınek, M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A, 950(1–2), 21–29. https://doi.org/10.1016/S0021-9673(02)00024-9 DOI: https://doi.org/10.1016/S0021-9673(02)00024-9
  7. Dziurka, M., Janeczko, A., Juhász, C., Gullner, G., Oklestková, J., Novák, O., Barna, B. (2016). Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions. Plant Physiol. Biochem., 109, 355–364. https://doi.org/10.1016/j.plaphy.2016.10.013 DOI: https://doi.org/10.1016/j.plaphy.2016.10.013
  8. Fan, L., Hasenstein, K.H., Wang, L. (2019). Embryology of Iris sanguinea Donn ex Horn. and its systematic relationship. J. For. Res., 306, 2007–2020. https://doi.org/10.1007/s11676-019-01039-z DOI: https://doi.org/10.1007/s11676-019-01039-z
  9. Goyal, K., Walton, L.J., Tunnacliffe, A. (2005). LEA proteins prevent protein aggregation due to water stress. Biochem. J., 3881, 151–157. https://doi.org/10.1042/BJ20041931 DOI: https://doi.org/10.1042/BJ20041931
  10. Jones, K.D., Kaye, T.N. (2014). Factors influencing germination of a functionally important grassland plant, Iris tenax. Plos One, 92, e90084. https://doi.org/10.1371/journal.pone.0090084 DOI: https://doi.org/10.1371/journal.pone.0090084
  11. Kucera, B., Cohn, M.A., Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res., 154, 281–307. https://doi.org/10.1079/SSR2005218 DOI: https://doi.org/10.1079/SSR2005218
  12. Lafon-Placette, C., Köhler, C. (2014). Embryo and endosperm, partners in seed development. Curr. Opin. Plant Biol., 17, 64–69. https://doi.org/10.1016/j.pbi.2013.11.008 DOI: https://doi.org/10.1016/j.pbi.2013.11.008
  13. Li, W., Yamaguchi, S., Khan, M.A., An, P., Liu, X., Tran, L.S.P. (2016). Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress. Front. Plant Sci., 6, 1235. https://doi.org/10.3389/fpls.2015.01235 DOI: https://doi.org/10.3389/fpls.2015.01235
  14. Liu, A., Gao, F., Kanno, Y., Jordan, M.C., Kamiya, Y., Seo, M., Ayele, B.T. (2013). Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. Plos One, 82, e56570. https://doi.org/10.1371/journal.pone.0056570 DOI: https://doi.org/10.1371/journal.pone.0056570
  15. Morgan, M.D. (1990). Seed germination characteristics of Iris virginica. Am. Midl. Nat., 209–213. https://doi.org/10.2307/2426170 DOI: https://doi.org/10.2307/2426170
  16. Nguyen, T.N., Tuan, P.A., Ayele, B.T. (2022). Jasmonate regulates seed dormancy in wheat via modulating the balance between gibberellin and abscisic acid. J. Exp. Bot., 738, 2434–2453. https://doi.org/10.1093/jxb/erac041 DOI: https://doi.org/10.1093/jxb/erac041
  17. Pande, P.C., Singh, V. (1981). Floral development of Iris decora Wall. Iridaceae. Bot. J. Linn. Soc., 831, 41–56. https://doi.org/10.1111/j.1095-8339.1981.tb00128.x DOI: https://doi.org/10.1111/j.1095-8339.1981.tb00128.x
  18. Riley, G.A. (1942). The relationship of vertical turbulence and spring diatom flowerings. J. Mar. Res, 51, 67–87. https://peabody.yale.edu/sites/default/files/ documents/publications/jmr05-01-05GARILEY1942.pdf
  19. Rudall, P. (1994). Anatomy and systematics of Iridaceae. Bot. J. Linn. Soc., 1141, 1–21. https://doi.org/10.1111/j.1095-8339.1994.tb01920.x DOI: https://doi.org/10.1111/j.1095-8339.1994.tb01920.x
  20. Sun, Y.C., Zhang, Y.J., Wang, K., Qiu, X.J. (2006). NaOH scarification and stratification improve germination of Iris lactea var. chinensis seed. HortScience, 413, 773–774. https://doi.org/10.21273/HORTSCI.41.3.773 DOI: https://doi.org/10.21273/HORTSCI.41.3.773
  21. Śmigała, M., Winiarczyk, K., Dąbrowska, A., Domaciuk, M., Gancarz, M. (2021). Determination of the influence of mechanical properties of capsules and seeds on the susceptibility to feeding of Mononychus pubctumalbum in endangered plant species Iris aphylla L. and Iris sibirica L. Sensors, 216, 2209. https://doi.org/10.3390/s21062209 DOI: https://doi.org/10.3390/s21062209
  22. Tuan, P.A., Kumar, R., Rehal, P.K., Toora, P.K., Ayele, B.T. (2018). Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front. Plant Sci., 9, 668. https://doi.org/10.3389/fsufs.2019.00003 DOI: https://doi.org/10.3389/fpls.2018.00668
  23. Tillich, H.J. (2003). Seedling morphology in Iridaceae: indications for relationships within the family and to related families. Flora-Morphology, Distribution, Functional Ecology of Plants, 1983, 220-242. https://doi.org/10.1078/0367-2530-00094 DOI: https://doi.org/10.1078/0367-2530-00094
  24. Turis, P., Kliment, J., Feráková, V., Dítě, D., Eliáš, P., Hrivnák, R., Bernátová, D. (2014). Red List of vascular plants of the Carpathian part of Slovakia. Thaiszia Journal of Botany, 241, 35–87. Available: https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=5f53f2e3de90e33da8da29650e509179279c17c6
  25. Ustuner, H., Nasırcılar, A.G., Yavuz, M., Gokturk, R.S. (2022). In vitro propagation of Gypsophila pilulifera, an endangered endemic ornamental plant species. Acta Sci. Pol., Hortorum Cultus, 21(6), 21–31. https://orcid.org/0000-0002-1439-8502 DOI: https://doi.org/10.24326/asphc.2022.6.2
  26. Wilson, C.A. (2001). Floral stages, ovule development, and ovule and fruit success in Iris tenax, focusing on var. gormanii, a taxon with low seed set. Am. J. Bot., 8812, 2221–2231. https://doi.org/10.2307/3558384 DOI: https://doi.org/10.2307/3558384
  27. Woś, A. (1999). Klimat Polski [Climate of Poland]. Wydawnictwo Naukowe PWN, Warszawa [in Polish].
  28. Xie, Z., Zhang, Z.L., Hanzlik, S., Cook, E., Shen, Q.J. (2007). Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant molecular biology, 643, 293–303. https://doi.org/10.1007/s11103-007-9152-0 DOI: https://doi.org/10.1007/s11103-007-9152-0
  29. Zhang, K., Yao, L., Zhang, Y., Baskin, J.M., Baskin, C.C., Xiong, Z., Tao, J. (2019). A review of the seed biology of Paeonia species Paeoniaceae, with particular reference to dormancy and germination. Planta, 2492, 291–303. https://doi.org/10.1007/s00425-018-3017-4 DOI: https://doi.org/10.1007/s00425-018-3017-4
  30. Zhang, Z.L., Xie, Z., Zou, X., Casaretto, J., Ho, T.H.D., Shen, Q.J. (2004). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol., 1344, 1500–1513. https://doi.org/10.1104/pp.103.034967 DOI: https://doi.org/10.1104/pp.103.034967

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

<< < 21 22 23 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.