Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 20 Nr 4 (2021)

Artykuły

FOLIAGE APPLIED SILICON AMELIORATES DROUGHT STRESS THROUGH PHYSIO-MORPHOLOGICAL TRAITS, OSMOPROTECTANTS AND ANTIOXIDANT METABOLISM OF CAMELINA (Camelina sativa L.) GENOTYPES

DOI: https://doi.org/10.24326/asphc.2021.4.4
Przesłane: 3 kwietnia 2020
Opublikowane: 2021-08-31

Abstrakt

Silicon (Si) is one of the best plant defense elements against the biotic and abiotic stresses. Camelina plants accumulate Si which serves in protection against drought stress. The present study was conducted to investigate the impact of different doses of foliage applied Si (0, 3, 6 and 9 mM) under water stress (40% field capacity, FC) and non-stress conditions (100% FC) on camelina genotypes (Canadian and Australian). The imposed drought drastically decreased the growth parameters like root-shoot length and plant fresh and dry weight and also had negative impact on the chlorophyll content along with water relation attributes (water potential, osmotic potential and turgor pressure). In contrast, total free amino acids, total soluble proteins, proline and antioxidants such as ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were enhanced especially in water stressed Canadian genotype, while osmoprotectants (flavonoids, anthocyanins and glycinebetaine) and phenolics contents were decreased. On the other hand, the foliar application of Si was instrumental in enhancing the growth of camelina by increasing the chlorophyll contents and water relation of stressed and non-stressed plants. Similarly, the biochemical, osmoprotectants and antioxidant metabolism was also improved in camelina stressed plants through the application of foliar Si. In conclusion, foliar application of 6 mM Si at vegetative growth stage played a vital role in alleviating the drastic impact of water stress on camelina growth by improving the water status, chlorophyll content, accumulation of phenolics and osmoprotectants and activating antioxidants. Therefore, the foliar application of Si could be developed as an important biologically viable strategy for boosting the tolerance in camelina plants to water stress conditions.

Bibliografia

  1. Abbas, T., Balal, R.M., Shahid, M.A., Pervez, M.A., Ayyub, C.M., Aqueel, M.A. (2015). Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol. Plant., 37(2), 37–60. https://doi.org/10.1007/s11738-014-1768-5
  2. Abramovic, H., Abram, V. (2005). Physiochemical properties, composition and oxidative stability of camelina sativa oil. Food Technol. Biotechnol., 43, 63–70.
  3. Ahmad, Z., Waraich, E.J., Ahmad, R., Shahbaz, M. (2017). Modulation in water relations, chlorophyll contents and antioxidants activity of maize by foliar phosphorus application under drought stress. Pak. J. Bot., 49(1), 11–19.
  4. Ahmed, M., Fayyaz, U.H., Qadeer, U., Aslam, M.A. (2011). Silicon application and drought tolerance mechanism of sorghum. Afr. J. Agr. Res., 6, 594–607.
  5. Bates, L.S., Wladren, P.R., Tear, D.T. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207.
  6. Bazzaz, Md. M., Hossain, A., Farooq, M., Alharby, H., Bamagoos, A., Md. Nuruzzaman, Khanum, M., Hossain, Md. M., Kizilgeci, F., Öztürk, F., Çig, F., El Sabagh, A. (2020). Phenology, growth and yield are strongly influenced by heat stress in late sown mustard (Brassica spp.) varieties. Pak. J. Bot., 52(4), 1189–1195. https://doi.org/10.30848/PJB2020-4(44
  7. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal. Biochem., 72, 248–254.
  8. Bukhari, M.A., Ashraf, M.Y., Ahmed, R., Waraich, E.J., Hameed, M. (2015). Improving drought tolerance potential in wheat (Triticum aestivum L.) through exogenous silicon supply. Pak. J. Bot., 47(5), 1641–1648.
  9. Cakmak, I. (1994). Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-and potassium-deficient leaves, but not in phosphorus-deficient leaves. J. Exp. Bot., 45, 1259–1266. https://doi.org/10.1093/jxb/45.9.1259
  10. Chen, W., Yao, X., Cai, K., Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res., 142, 67–76. https://doi.org/10.1007/s12011-010-8742-x
  11. Dixit, V., Pandey, V., Shyam, R. (2001). Differential antioxidative response to cadmium in roots and leaves of pea. J. Exp. Bot., 52, 1101–1109. https://doi.org/10.1093/jexbot/52.358.1101
  12. El Sabagh, A., Hossain, A., Barutçular, C., Islam M.S., Ratnasekera, D., Kumar, N., Meena, R.S., Gharib, H.S., Saneoka, H., Teixeira da Silva, J.A. (2019). Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: a critical review. Aust. J. Crop Sci., 13(01), 88–97.
  13. El Sabagh, A. et al. (2020). Drought and heat stress in cotton (Gossypium hirsutum L.). Consequences and their possible mitigation strategies. In: Agronomic crops, Hasanuzzaman, M. (eds). Springer, Singapore, 613-634 https://doi.org/10.1007/978-981-15-0025-1_30
  14. Ehsanzadeh, P., Nekoonam, M.S., Azhar, J.N., Pourhadian, H., Shaydaee, S. (2009). Growth chlorophyll and cation concentration of tetraploid wheat on a solution high in sodium chloride salt: Hulled versus free-threshing genotypes. J. Plant Nutr., 32(1), 58–70. https://doi.org/10.1080/01904160802531019
  15. Faisal, M., Muhamamd, A.I., Serap, K.A., Abdul, H., Nasir, R., Ayman, S., Abdul, K., Muzammil, H.S. (2020). Exogenously foliage applied micronutrients efficacious impact on achene yield of sunflower under temperate conditions. Pak. J. Bot., 52(4), 1215–1221. http://dx.doi.org/10.30848/PJB2020-4(33)
  16. Gesch, R.W. (2014). Influence of genotype and sowing date on camelina growth and yield in the north central U.S. Ind. Crops Prod., 54, 209–215. https://doi.org/10.1016/j.indcrop.2014.01.034
  17. Giannopolitis, C.N., Ries, S.K. (1997). Superoxide dismutase I. Occurrence in higher plants. Plant Physiol., 59, 309–314.
  18. Gong, H., Chen, K. (2012). The regulatory role of Si on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol. Plant., 34, 1589–1594. https://doi.org/10.1007/s11738-012-0954-6
  19. Gong, H., Chen, K., Chen, G., Wang, S., Zhang, C. (2003). Effects of silicon on growth of wheat under drought. J. Plant Nutr., 26, 1055–1063. https://doi.org/10.1081/PLN-120020075
  20. Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169, 313–321. https://doi.org/10.1016/j.plantsci.2005.02.023
  21. Grieve, C.M., Gratan, S.R. (1983). Rapid assay for determination of water soluble. Quaternary ammonium compounds. Plant Soil, 70, 303–307.
  22. Gugel, R.K., Falk, K.C. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can. J. Plant Sci., 86, 1047–1058. https://doi.org/10.4141/P04-081
  23. Hamdia, M.A., Shaddad, M.A.K. (2010). Salt tolerance of crop plants. J. Stress Physiol. Biochem., 6, 64–90.
  24. Hattori, T., Inanagaa, S., Arakib, H. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant., 123, 459–466. https://doi.org/10.1111/j.1399-3054.2005.00481.x
  25. Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., Eneji, A.E., Morita, S. (2007). Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ. Exp. Bot., 60, 177–182. https://doi.org/10.1016/j.envexpbot.2006.10.004
  26. Hrastar, R., Petrisic, M.G., Ogrinc, I., Kosir, I.G. (2009). Fatty acid and stable carbon isotope characterization of Camelina sativa oil: implications for authentication. J. Agric. Food Chem., 57, 579–585. https://doi.org/10.1021/jf8028144
  27. Iqbal, M.A. (2019). Nano-fertilizers for sustainable crop production under changing climate: a global perspective. In: Crop Production, Hasanuzzaman, M. (ed.). IntechOpen. https://doi.org/10.5772/intechopen.89089
  28. Iqbal, M.A., Abdul, H., Muzammil, H.S., Imtiaz, H., Tanveer, A., Saira, I., Anser, A. (2019). A meta-analysis of the impact of foliar feeding of micronutrients on productivity and revenue generation of forage crops. Planta Daninha, 37, e019189237. https://doi.org/10.1590/S0100-83582019370100046
  29. Iqbal, A., Muhammad, A.I., Amir, I., Zubair, A., Muhammad, M., Zahoor, A., Muhammad, U.F., Ghulam, A., Muhammad, F. (2017). Boosting forage yield and quality of maize (Zea mays L.) with multi-species bacterial inoculation in Pakistan. Phyton-Int. J. Exp. Bot., 86, 84–88. https://doi.org/10.32604/phyton.2017.86.084
  30. Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugar in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant., 84, 55–60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
  31. Karmollachaab, A., Gharineg, M.H., Bakhshandeh, M., Moradi, M., Fathi, G. (2014). Effect of silicon application on physiological characteristic and growth of wheat (Triticum aestivum L.) under drought stress conditions. J. Agroecol., 5(4), 430–442.
  32. Kaya, C., Tuna, L., Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant Nutr., 29, 1469–1480. https://doi.org/10.1080/01904160600837238
  33. Kumari, A., Sairam, R.K. (2013). Moisture stress induced increases in the activity of enzymes of osmolytes biosynthesis are associated with stress tolerance in wheat genotypes. Indian J. Plant Physiol., 18, 223–230. https://doi.org/10.1007/s40502-013-0032-0
  34. Lange, H., Shropshire, W., Mohr, H. (1971). An analysis of phytochrome–mediated anthocyanin synthesis. Plant Physiol., 47, 649–655.
  35. Lee, Y.P., Takanashi, T. (1966). An improved colorimetric determination of amino acids with the use of ninhydrin. Anal. Biochem., 14, 71–77.
  36. Lenssen, A.W., Iverson, W.M., Sainju, U.M., Caesar-Ton, T.C., Blodgett, S.L., Allen, B.L., Evans, R.G. (2012). Yield, pests, and water use of durum and selected crucifer oilseeds in two-year rotations. Agron. J., 104, 1295–1304. https://doi.org/10.2134/agronj2012.0057
  37. Liang, Y.C., Zhu, J., Li, Z.J. (2008). Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ. Exp. Bot., 64, 286–294. https://doi.org/10.1016/j.envexpbot.2008.06.005
  38. Lu, C., Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop camelina sativa by Agro-bacterium mediated transformation. Plant Cell Rep., 27, 273–278. https://doi.org/10.1007/s00299-007-0454-0
  39. Matoh, T., Murata, S., Takahashi, E. (1991). Effect of silicate application on photosynthesis of rice plants (in Japanese). Japan J. Soil Sci. Plant Nutr., 62, 248–251.
  40. Ming, D.F., Pei, Z.F., Naeem, M.S., Gong, H.J., Zhou, W.J. (2012). Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron. Crop Sci., 198, 14–26. https://doi.org/10.1111/j.1439-037X.2011.00486.x
  41. Moser, B.R. (2008). Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. Energy Fuels, 22, 4301–4306. https://doi.org/10.1021/ef800588x
  42. Nawaz, F., Ashraf, M.Y., Ahmad, R., Waraich, E.A., Shabbir, R.N., Bukhari, M.A. (2015). Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem., 175, 350–357. https://doi.org/10.1016/j.foodchem.2014.11.147
  43. Na, L., Jiashu, C. (2001). Effects of silicon on earliness and photosynthetic characteristics of melon. Acta. Hortic. Sin., 28, 421–424. https://doi.org/10.1155/2014/718716
  44. Ordoñez, A.A.L., Gomez, J.G., Vattuone, M.A., Isla, M.I. (2006). Antioxidant activities of Sechiumedule (Jacq.) Swart extracts. Food Chem., 97, 452–458. https://doi.org/10.1016/j.foodchem.2005.05.024
  45. Pei, Z.F., Ming, D.F., Liu, D., Wan, G.L., Geng, X.X., Gong, H.J., Zhou, W.J. (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat seedlings. Plant Growth Regul., 29, 106–115. https://doi.org/10.1007/s00344-009-9120-9
  46. Pilgeram, A.L., Sands, D.C., Boss, D., Dale, N., Wichman, D., Lamb, P., Lu, C., Barrows, R., Kirkpatrick, M., Thompson, B., Johnson, D.L. (2007). Camelina sativa, a Montana omega-3 and fuel crop. In: Issues in new crops and new uses, Janick, J., Whipkey, A. (eds.). ASHS Press, Alexandria, 129–131.
  47. Putnam, D.H., Budin, J.T., Field, L.A., Breene, W.M. (1993). Camelina: a promising low-input oilseed. In: New crops, Janick, J., Simon, J.E. (eds.). Wiley, New York, 314–322.
  48. Reddy, T.Y., Reddy, V.R., Anbumozhi, V. (2003). Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul., 41, 75–88. https://doi.org/10.1023/A:1027353430164
  49. Saneoka, H., Moghaieb, R.E.A., Premachandra, G.S., Fujita, K. (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostispalustris Huds. Environ. Exp. Bot., 52, 131–138. https://doi.org/10.1016/j.envexpbot.2004.01.011
  50. Schillinger, W.F., Wysocki, D.J., Chastain, T.G., Guy, S.O., Karow, R.S. (2012). Camelina: planting date and method effects on stand establishment and seed yield. Field Crop Res., 130, 138–144. https://doi.org/10.1016/j.fcr.2012.02.019
  51. Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci., 7, 196. https://doi.org/10.3389/fpls.2016.00196
  52. Soundararajan, P., Sivanesan, I., Jana, S., Jeong, B.R. (2014). Influence of silicon supplementation on the growth and tolerance to high temperature in Salvias plendens. Hort. Environ. Biotechnol., 55, 271–279. https://doi.org/10.1007/s13580-014-0023-8
  53. Subbarao, G.V., Num, N.H., Chauhan, Y.S., Johansen, C. (2000). Osmotic adjustment, water relation and carbohydrates remobilization in pigeon pea under water deficits. J. Plant Physiol., 157, 651–659. https://doi.org/10.1016/S0176-1617(00)80008-5
  54. Waraich, E.A., Ahmad, R., Ahmad, R., Ahmed, Z., Ahmad, Z., Barutcular, C., Erman, M., Cig, F., Saneoka, H., Öztürk, F., El Sabagh, A. (2020a). Comparative study of growth, physiology and yield attributes of camelina (Camelina sativa L.) and canola (Brassica napus L.) under different irrigation regimes. Pak. J. Bot., 52(5), 1537–1544. https://doi.org/10.30848/PJB2020-5(2)
  55. Waraich, E.A., Zahoor, A., Ahmad, R., Erman, M., Cig, F., El Sabagh, A. (2020b). Alterations in growth and yield of Camelina induced by different planting densities under water deficit stress. Phyton-Int. J. Exp. Bot., 89, 587. https://doi.org/10.32604/phyton.2020.08734
  56. Waterhouse, A.L. (2001). Determination of total phenolics. In: Current protocols in food analytical chemistry, Wrolstad, R.E. (ed.). Wiley, Hoboken, pp.1–8.
  57. Wysocki, D.J., Chastain, T.G., Schillinger, W.F., Guy, S.O., Karow, R.S. (2013). Camelina: seed yield response to applied nitrogen and sulfur. Field Crops Res., 145, 60–66. https://doi.org/10.1016/j.fcr.2013.02.009
  58. Yao, X.Q., Chu, J.Z., Wang, G.Y. (2009). Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiol. Plant., 5, 1031–1036. https://doi.org/10.1007/s11738-009-0322-3
  59. Yousaf, M., Fahad, S., Shah, A.N., Shaaban, M., Khan, M.J., Sabiel, S.A.I., Ali, S.A.I., Wang, Y., Osman, K.A. (2014). The effect of nitrogen application rates and timing of first irrigation on wheat growth and yield. Int. J. Agric. Innov. Res., 2(4), 645–653.
  60. Zahoor, A., Waraich, E.A., Barutçular, C., Hossain, A., Erman, M., Çiğ, F., Gharib H., EL Sabagh A. (2020). Enhancing drought tolerance in wheat through improving morphophysiological and antioxidants activities of plants by the supplementation of foliar silicon. Phyton-Int. J. Exp. Bot., 89(3), 529–539. https://doi.org/10.32604/phyton.2020.09143
  61. Zhang, L., Li, Q., Yang, X., Xia, Z. (2012). Effects of sodium selenite and germination on the sprouting of chickpeas (Cicer arietinum L.) and its content of selenium, for-mononetin and biochanin A in the sprouts. Biol. Trace Elem. Res., 146, 376–380. https://doi.org/10.1007/s12011-011-9261-0

Downloads

Download data is not yet available.

Podobne artykuły

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.