Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 16 Nr 3 (2017)

Artykuły

ANTIOXIDANT NUTRITIONAL QUALITY AND THE EFFECT OF THERMAL TREATMENTS ON SELECTED PROCESSING TOMATO LINES

Przesłane: 19 października 2020
Opublikowane: 2017-06-30

Abstrakt

The aim of this study was to choose the genotypes of industrial tomato for the content of bioactive components (ascorbic acid, β-carotene, lycopene, total phenols and flavonoids) in fruits and its preservation during thermal treatment (by drying with parallel warm air at 60°C) and making of tomato juice (by pasteurization – cooking at 100°C for 7 minutes). For this research, a comparative trial has been set up with 7 genotypes, 1 commercial variety (SP-109) and 6 selected lines (SPP, SPSM, SPRZ, SPRM-20, S-60 and SPO) of high inbreeding generations. Experimental design has been done according to standard method of growing industrial tomato in random block system with three replications. By analysing the cumulative results of all
researched genotypes for processing industry, the best for drying and fresh consumption was SPRZ and for juice extraction, SPSM was the best line.

Bibliografia

Abushita, A., Daood, G., Biacs, A. (2000). Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem., 48, 2075–2081.
Anguelova, T., Warthesen, J. (2000). Lycopene stability in tomato powders. J. Food Sci., 65, 67–70.
Asami, K., Hong, J., Barrett, M., Mitchell, E. (2003). Processing induced changes in total phenolics and procyanidins in clingstone peaches. J. Sci. Food Agr., 83, 56–63.
Beckles, D. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol., 63, 129–140.
Binoy, G., Charanjit, K., Khurdiyaa, S., Kapoorb, C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem., 84, 45–51.
Bourne, C., Rice-Evans, C. (1998). Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun., 253, 222–227.
Brighente, C., Dias, M., Verdi, G., Pizzolatti, G. (2007). Antioxidant activity and total phenolic content of some Brazilian species. Pharm. Biol., 45, 156–161.
Capanoglu, E., Beekwilder, J., Boyacioglu, D., De Vos, R.C., Hall, R.D. (2010). The effect of industrial food processing on potentially health-beneficial tomato antioxidants. Crit. Rev. Food Sci. Nutr., 50(10), 919–930.
Chang, H., Lin, Y., Chang, Y., Liu, C. (2006). Comparisons in the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng., 77, 478–485.
Cvijović, M., Aćamović-Đoković, G. (2005). Praktikum iz Biohemije. Agronomski fakultet, Čačak (srb).
D’Evoli, L., Lombardi-Boccia, G., Lucarini, M. (2013). Influence of heat treatments on carotenoid content of cherry tomatoes. Foods, 2(3), 352–363.
D’Introno, A., Paradiso, A., Scoditti, E. (2009). Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotech. J., 7(5), 422–429.
Davey, W., Van Montagu, M., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, J., Strain, J., Favell, D., Fletcher, J. (2000). Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability, and effects of processing. J. Sci. Food Agr., 80, 825–860.
Demiray, E., Tulek, Y., Yilmaz, Y. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT Food Sci. Tech., 50, 171–176.
Dewanto V., Wu X., Kafui K., Rui L. (2002). Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem., 50, 3010–3014.
Di Mascio, P., Kaiser, S., Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys., 274, 532–538.
Frusciante, L., Carli, P., Ercolano, R. (2007). Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res., 51(5), 609–617.
Gallie, D. (2013). L-Ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica, http://dx.doi.org/10.1155/2013/795964.
Ganeva, D., Pevicharova, G. (2015). Kopnezh F1 – new tomato hybrid for fresh consumption and processing. Plant Sci., 52(1), 74–79.
García-Valverde, V., Navarro-Gonzalez, I., García-Alonso, J., Jesus Periago, M. (2013). antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioproc. Tech., 6(2), 391–402.
George, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem., 124, 1603–1611.
Hollman, P.C.H., Hertog, M.G.L., Katan, M.B (1996). Analysis and health effects of flavonoids. Food Chem., 57, 43–46.
Ibitoye, D.O., Akin-Idowu, P.E., Ademoyegi, O.T. (2009). Agronomic and Lycopene evaluation in tomato (Lycopersicon Mill.) as a Function of genotype. World J. Agric. Sci., 5(S), 892–895.
Khachik, F., Sprangler, J., Smith, C., Canfield, M. (1997). Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal. Chem., 69, 1873–1881.
Locato, V., Cimini, S., Gara, D. (2013). Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Front Plant Sci., 4, 152.
Luthria, D.I., Mukhopadhyay, S., Krizek, D.T. (2006). Content of total phenolic and phenolic acid in tomato (Lycopersicon escilentum Mill.) fruits an influenced by cultivar and solar UV radiation. J. Food Compos. Anal., 19, 771–777.
Maiani, G., Caston, M., Catasta, G., Toti, E., Cambrodon, I., Bysted, A., Granado-Lorencio, F., Olmedilla-Alonso, B., Knuthsen, P., Valoti, M., Bohm, V., Mayer-Miebach, E., Behsnilian, D., Schlemmer, U. (2009). Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nut. Food Res., 53(2), 194–218.
Mangels, R., Holden, M., Beecher, R., Forman, R., Lanza, E. (1993). Carotenoid content of fruits and vegetables: an evaluation of analytic data. J. Am. Diet. Assoc., 93, 284–296.
Marinova, D., Ribarova, F., Atanassova, M. (2005). Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall., 40(3), 255–260.
Martínez-Hernandez, B.G., Boluda-Aguilar, M., Taboada-Rodríguez, A., Soto-Jover, S., Marín-Iniesta, F., Lopez-Gomez A. (2016). Processing, packaging, and storage of tomato products: influence on the lycopene content. Food Eng. Rev., 8(1), 52–75.
Martínez-Valverde, I., Periago M., Provan, G., Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agr., 82, 323–330.
Mayeaux, M., Xu, Z., King, J.M., Prinyawivaktul, W. (2006). Effect of cooking condition on the lycopene content in tomatoes. J. Food Sci., 71, 461–464.
Mukhopadhyay, S., Luthria, D.L., Robbins, R.J. (2006). Optimization of extraction process for phenolic acids from black cohosh (Cimicifuga racemosa) by pressurized liquid extraction. J. Sci. Food Agr., 86, 156–162.
Nagata, M., Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Food Sci. Technol., 39, 925–928.
Norshahida, S.M., Azizah, A.H., Azizah, O., Nazamid, S., Farooq, A., Mohd, S.P.D., Muhammad, R.H. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. Int. J. Mol. Sci., 12, 4678–4692.
Odriozola-Serrano, I., Soliva-Fortuny, R., Hernández-Jover, T., Martín-Belloso, O. (2009). Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem., 112, 258–266.
Pek, Z., Szuvandzsiev, P., Daood, H., Nemenyi, A., Helyes, L. (2014). Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Cent. Eur. J. Biol., 9(4), 383–395.
Pérez-Conesa, D., García-Alonso, J., García-Valverde, V., Iniesta, M.D., Jacob, K., Sánchez-Siles, L.M. (2009). Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innovative. Food Sci. Emer. Tech., 10(2), 179–188.
Pérez-Gregorio, R., Regueiro, J., González-Barreiro, C., Rial-Otero, R., Simal-Gándara, J. (2011a). Changes in antioxidant flavonoids during freeze-drying of red anions and subsequent storage. Food Control., 22, 1108–1113.
Pérez-Gregorio, R., García-Falcon, S., Simal-Gandara, J. (2011b). Flavonoids changes in fresh-cut onions during storage in different packaging systems. Food Chem., 124, 652–658.
Raiola, A., Rigano, M.M., Calafiore, R., Frusciante, L., Barone, A. (2014). Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators of inflammation, 2014, http://dx.doi.org/10.1155/2014/13tion, 2014, http://dx.doi.org/10.1155/2014/139873.
Ruggieri, V., Hamed, B., Barone, A., Frusciante, L., Chiusano, M.L. (2016). Integrated bioinformatics to decipher the ascorbic acid metabolic network in tomato. Plant Mol. Biol., 91(4–5), 397–412.
Sanchez-Moreno, C., Plaza, L., de Ancos, B., Cano, M.P. (2006). Impact of high pressure and traditional thermal processing of tomato puree on carotenoids, vitamin C and antioxidant activity. J. Sci. Food Agr., 86(2), 171–179.
Scalzo, J., Politi, A., Pellegrini, N., Mezzetti, B., Battino, M. (2005). Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition, 21(2), 207–213.
Schlueter, A.K., Johnston, C.S. (2011). Vitamin C: overview and update. J. Evid. Based Complement. Altern. Med., 16, 49–57.
Shi, J., Maguer, M.L. (2000). Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Nutr., 40, 1–42.
Shofian, M., Azizah, H., Azizah, O., Nazamid, S., Farooq, A., Mohd, D., Muhammad, H. (2011). Effect of freezedrying on the antioxidant compounds and antioxidant activity of selected tropical fruits. Int. J. Mol. Sci., 12, 4678–4692.
Singleton, V., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–175. Slimestad, R., Fossen, T., Verheul, M.J. (2008). The flavonoids of tomatoes. J. Agr. Food Chem., 56(7), 2436–2441.
Thompson, K.A., Marshal, M.R., Sims, C.A., Wei, C.I., Sargent, S.A., Sott, J.W. (2000). Cultivar, maturity and heat tretman on lycopene content in tomatoes. J. Food Sci., 65, 791–795.
Van het Hof, K.H., De Boer, B.C.J., Tijburg, L.B.M., Lucius, B.R.H.M., Zijp, I., West, C.E., Hautvast, J.G.A.J., Weststrate, J.A. (2000a). Carotenoid bioavailability in humans from tomatoes processed in different ways determined from the carotenoid response in the triglyceride-rich lipoprotein fraction of plasma after a single consumption and in plasma after four days of consumption. J. Nutr., 130, 1189–1196.
Van het Hof, K.H., West, C.E., Weststrate, J.A., Hautvast, J.G.A.J. (2000b). Dietary factors that affect the bioavailability of carotenoids. J. Nutr., 130, 503–506.
www.faostat.org
Zdravković, J., Marković, Z., Pavlović, R., Zdravković, M. (2012). Paradajz. Smedrevska Palanka, Institut za povrtarstvo, Agronomski fakultet, Čačak, 228 p.

Downloads

Download data is not yet available.

Inne teksty tego samego autora

Podobne artykuły

<< < 17 18 19 20 21 22 23 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.