Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 15 Nr 1 (2016)

Artykuły

CHEMICAL COMPOSITION, VOLATILES, AND ANTIOXIDANT ACTIVITY OF Rosa iberica STEV. hips

Przesłane: 25 października 2020
Opublikowane: 2016-02-29

Abstrakt

Abstract. Rosehip fruits have been known to contain significant amounts of bioactive compounds. These bioactive compounds positively affect human health due to their antioxidant activities. This study aimed to analyze the total phenolic content (TPC) and total anthocyanin content (TAC), organic acids, total soluble solids (TSS), sugars, total dry matter (TDM), Lascorbic acid content (AAC), total antioxidant capacity and volatile components present in R. iberica Stev. hips using spectrophotometry, high performance liquid chromatography (HPLC) and Headspace and Immersion Solid Phase Micro Extraction gas chromatography-mass spectrometry (HS and Im-GC/MS). TSS, TDM, AAC, acidity, TAC and TPC were found to be 27, 44.6%, 503.26 mg·100 g-1 frozen weight (FW), 2%, 2.50 mg · 100 g-1 FW, 2832.3 mg · 100 g-1 FW, respectively. The major acids detected in R. iberica Stev. hips were citric acid (0.62 g · 100 g-1 FW) and malic acid (0.49 g · 100 g-1 FW) other detected acids included succinic acid (0.012 g · 100 g-1 FW) and fumaric acid (0.016 g · 100 g-1 FW). Total sugar content was 26.74 g · 100 g-1 FW, and glucose was the major sugar (9.35 g. · 100 g-1 FW), followed by fructose (8.58 g g · 100 g-1 FW), sorbitol (8.32 g · 100 g-1 FW), and very low quantities of sucrose (0.49 g · 100 g-1 FW). Twenty-five volatile components were identified using HS-GC/MS, and the major volatiles were 2,4-bis (1,1-dimethylethyl) phenol (20.35%), naphthalene (18.72%), ethanol (16.59%), nonanal (6.23%), acetic acid (4.39%), 2-propanone, 1-hydroxy (2.53%). Twenty-three volatile components of Rosa hips have been detected for the first time in this study. Twenty-eight components were identified by Im-GC/MS; however, fifteen of these components were determined to be different from those identified using HS-GC/MS. The FRAP value of hips was 38.55 mmol TE · g-1 FW and the ABTS value was 47.75 mmol TE · g-1 FW.

Bibliografia

AOAC (1998). Association of official analytical chemists: Official methods of analysis Met. 925.23 (16.ed.). Washington: Patricia Cunniff, 4th Edition.
Adamczak, A., Buchwaldi, W., Zielinski, J., Mielcarek, S. (2012). Flavonoid and organic acid content in rose hips (Rosa L. Sect Caninae dc. Em. Christ). Acta Biol. Cracov. Bot., 54(1), 105–112.
Artik, N., Eksi, A. (1988). Studies on chemical composition of some wild fruits (Rosa canina, Crataegus monogyna, Crataegus aronia, Vaccinium myrtillus and Berberis vulgaris). Food Ind., 9, 33–34.
Ashoor, S.H., Knox, J.M. (1982). Determination of organic acids in foods by high performance liquid chromatography. J. Chromatogr., 299, 288–292.
Bagchi, D., Bagchi, M., Stohs, S.J., Das, D.K., Ray, S.D., Kuszynski, C.A. (2000). Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology, 148, 187–197.
Barros, L., Carvalho, A.M., Ferreira, I.C.F.R. (2011). Exotic fruit as a source of improving the traditional use of Rosa canina fruit in Portugal. Food Res. Int., 44, 2233–2236.
Barros, L., Carvalho, A.M., Morais, J.S., Ferreira, I.C.F.R. (2010). Strawberry-tree, blackthorn and rose fruits: Detailed characterization in nutrients and phytochemicals with antioxidant properties. Food Chem., 120, 247–254.
Bataglion, G.A., da Silva, F.M.A., Eberlin, M.N., Koolen, H.H.F. (2014). Simultaneous quantification of phenolic compounds in buriti fruit (Mauritia flexuosa L.f.) by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Food Res. Int., 66, 396–400.
Baytop, A. (2001). Old garden rose in Turkey. Turkish Republic Ministry of Culture Publications, Ankara, No. 2593 (in Turkish).
Baytop, T. (1984). Treatment with plants in Turkey. Istanbul University Publication No. 3255, Istanbul, Turkey (in Turkish).
Benzie, I.F.F., Strain, J.J. (1996). Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem., 239, 70–76.
Bohm, V., Frohlich, K., Roland, B. (2003). Rosehip: a new source of lycopene? Mol. Aspects Med., 24, 385–389.
Bozan, B., Tunalier, Z., Kosar, M., Altıntas, A., Baser, K.H.C. (1997). Comparison of ascorbic and citric acid contents in ‘Emphasis Type’. Proc. 11. Symp. Plant Origin. Crude Drugs, Ankara, 258 p.
Campeanu, G., Neata, G., Darjanschi, G. (2009). Chemical composition of the fruits of several apple cultivars growth as biological crop. Not. Bot. Horti Agrobo., 37(2), 161–164.
Celik, F., Kazankaya, A., Ercisli, S. (2009). Fruit characteristics of some selected promising rose hip (Rosa spp.) genotypes from Van region of Turkey. Afr. J. Agr. Res., 4(3), 236–240.
Cemeroğlu, B. (1992). Basic analysis methods of fruit and vegetables processing industry. Biltav Press, Ankara (in Turkish).
Cunja, V., Mikulic-Petkovsek, M., Zupan, A., Stampar, F., Schmitzer, V. (2015). Frost decreases content of sugars, ascorbic acids and some quercetin glycosides but stimulates selected carotenes in Rosa canina hips. J. Plant Physiol., 178, 55–63.
Davis, P.H. (1972). Flora of Turkey and the East Aegean Islands. In: Nilsson, O., (ed.). Edinburg Univ. Press. 4, 106–128.
Demir, F., Ozcan, M. (2001). Chemical and technological properties of rosa (Rosa canina L.) fruits grown wild in Turkey. Research note. J. Food Eng., 47, 333–336.
Demir, N., Yildiz, O., Alpaslan, M., Hayaloglu, A.A. (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT – Food Sci. Technol. 57, 126–133.
Dina, A., Nassima, C., Meriem, B., Karima, A., Hakima, L., Hania, B. (2009). Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem., 112, 303–309.
Dogan, A., Kazankaya, A. (2006). Fruit properties of rose hip species grown in lake Van basin (Eastern Anatolia Region). Asian J. Plant Sci., 5(1), 120–122.
Egea, I., Sánchez-Bel, P., Romojaro, F., Pretel, M.T. (2010). Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Food. Hum. Nutr., 65, 121–129.
Ercisli, S. (2005). Rose (Rosa L. spp.) germplasm resources of Turkey. Genet. Resour. Crop Ev., 52, 787–795.
Ercisli, S. (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem., 104, 1379–1384.
Fattahi, S., Jamei, R., Hosseini, S.S. (2012). Antioxidant and antiradicalic activity of Rosa canina and Rosa pimpinellifolia fruits from West Azerbaijan. Iran. J. Plant Physiol., 2(4), 523–529.
Gercekoglu, R., Bilgener, S., Soylu, A. (2009). General orcharding, Nobel Press, pp. 297 (in Turkish).
Gibson, L.J. (2012). The hierarchical structure and mechanics of plant materials. J.R. Soc., 1–18.
Giusti, M.M., Wrolstad, R.E. (2001). Anthocyanins Characterization and measurement with UV Visible spectroscopy. In: Current Protocols in Food Analytical Chemistry Wrolstad, R.E. (ed.). New York, Willey.
Goff, S.A., Klee, H.J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311, 815–19.
Grochowski, W. (1990). Uboczna produkcja leśna. PWN, Warszawa, Poland, pp. 379–383.
Guimarães, R., Barros, L., Dueñas, M., Carvalho, A.M., Queiroz, M.J.R.P., Santos-Buelga, C., Ferreira, I.J.F.R. (2013). Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chem., 141, 3721–3730.
Haruenkit, R., Poovarodom, S., Leontowicz, H., Leontowicz, M., Sajewicz, M., Kowalska, T., Delgado-Licon, E., Rocha-Guzman, N.E., Gallegos-Infante, J-A., Trakhtenberg, S., Gorinstein, S. (2007). Comparative study of health properties and nutritional value of durian, mangosteen, and snake fruit: Experiments in vitro and in vivo. J. Agr. Food Chem., 55, 5842–5849.
Hertog, M.G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., et al. (1995). Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 155(4), 381.
Holton, T.A., Cornish, E.C. (1995). Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7), 1071–1083.
Hvattum, E. (2002). Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionization tandem mass spectrometry and diodearray detection. Rapid Commun. Mass Sp., 16, 665.
Kafkas, E., Paydas, S. (2007). Evaluation and identification of volatile compounds of some promising strawberry types using HS-SPME technique by GCMS. W. J. Agr. Sci., 3(2), 191–195.
Kim, D.O., Chun, O.K., Kim, Y.J., Moon, H.Y., Lee, C.Y. (2003). Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agr. Food Chem., 51, 6509–6515.
Kovacs, S., Toth, M.G., Facsar, G. (2000). Fruit quality of some rose species native in Hungary. Acta Hortic., 538, 103–108.
Lai, C.S., Li, S.M., Miyauchi, Y., Suzawa, M., Ho, C.T., Pan, M.H. (2013). Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors. Food Funct., 4, 944–949.
Miron, D., Schaffer, A.A. (1991). Sucrose phosphate synthase, sucrose synthase and acid invertase in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Himb. and Bonpl. Plant Physiol., 95, 623–627.
Nilsson, O., 1997. Rosa. In: Flora of Turkey and the East Aegean Islands, Davis, P.H. (ed.), vol. 4. Edinburg University Press, Edinburg, pp. 106–128.
Nojavan, S., Khalılıan, F., Kiaie, F.M., Rahimi, A., Arabanian, A., Chalavi, S. (2008). Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J. Food Compos. Anal., 21, 300–305.
Nowak, R. (2005). Chemical composition of hips essential oils of some Rosa L. species. Z. Naturforsch. A., 60, 369–378.
Olsson, M.E., Gustavsson, K.E., Andersson, S., Nilsson, A., Duan, R.D. (2004). Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlation with antioxidant levels. J. Agr. Food Chem., 52, 7264–7271.
Özrenk, K., Gündoğdu, M., Doğan, A. (2012). Organic acid, sugar and mineral matter contents in rosehip (Rosa canina L.) fruits of Erzincan region. Y.Y.U. J. Agr. Sci., 22(1), 20–25 (in Turkish).
Palmer, J.W. (2010). Fruit dry matter concentration: a new quality metric for apples. J. Sci. Food Agr., 90, 2586–2594.
Park, H.J., Jung, U.J., Cho, S.J., Jung, H.K., Shim, S., Choi, M.S. (2013). Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose-and lipid-regulating enzymes in db/db mice. J. Nutr. Biochem., 24(2), 419–427.
Pawlaczyk, I., Czerchawski, L., Pilecki, W., Lamer-Zarawska, E., Gancarz, R. (2009). Polyphenolicpolysaccharide compounds from selected medicinal plants of Asteraceae and Rosaceae families: chemical characterization and blood anticoagulant activity. Carbohyd. Polym., 77, 568–575.
Perez-Cacho, P.R., Rouseff, R. (2008). Processing and storage effects on orange juice aroma: A review. J. Agr. Food Chem., 56, 9785–9796.
Roman, I., Stanila, A., Stanila, S. (2013). Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transilvania. Chem. Centr. J., 7(73), 2–10.
Rosu, C.M., Manzu, C., Olteanu, Z., Oprıca, L., Oprea, A., Cıornea, E., Zamfırache, M.M. (2011). Several fruit characteristics of Rosa sp. genotypes from the Northeastern region of Romania. Not. Bot. Horti Agrobo., 39(2), 203–208.
Sanz, C., Olias, J.M., Perez, A.G. (1997). Aroma biochemistry of fruits and vegetables. In: Phytochemistry of Fruit and Vegetables. Oxford University Press Inc. New York, USA, pp. 125–155.
Schwab, W., Davidovich-Rikanati, R., Lewinsohn, E. (2008). Biosynthesis of plant-derived flavor compounds. Plant J., 54, 712–732.
Seifried, H.E., Anderson, D.E., Fisher, E.I., Milner, J.A. (2007). A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem., 18, 567–579.
Shnyakina, G.P., Malygina, E.P. (1975). Vitamins and phenolic compounds in the fruits of Rosa species growing in the Soviet Far East. Rastitel. Res., 11, 390–394.
Spanos, G.A., Wrolstad, R.E. (1992). Phenolic of apple, pear and white grape juices and their changes with processing and storage. J. Agr. Food Chem., 40, 1478–1487.
Strzelecka, H., Kowalski, J. (2000). Encyklopedia zielarstwa i ziołolecznictwa. PWN, Warszawa, Poland.
Su, L., Yin, J.J., Charles, D., Zhou, K., Moore, J. (2007). Total phenolic contents, chelating capacities and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem., 100, 990–997.
Suni, M., Nyman, M., Eriksson, N.-A., Björk, L., Björk, I. (2000). Carbohydrate composition and content of organic acids in fresh and stored apples. J Sci. Food Agr., 80, 1538–1544.
Tucker, G.A., (1993). Introduction. In: Biochemistry of Fruit Ripening, Seymour, G.B., Taylo, R.J.E., Tucker, G.A. (eds). Chapman & Hall, London, UK, pp. 1–51.
Uggla, M., Gustavsson, K.E., Olsson, M.E., Nybom, H. (2005). Changes in colour and sugar content in rose hips (Rosa dumalis L. and Rosa rubiginosa L.) during ripening. J. Hortic. Sci. Biotech., 80(2), 204–208.
van den Berg, R., Haenen, G.R.M.M., van den Berg, H., van der Vijgh, W., Bast, A. (2000). The predictive value of the antioxidant capacity of structurally related flavonoids using the Trolox equivalent antioxidant capacity (TEAC) assay. Food Chem., 70, 391–395.
Wang, H., Cao, G.H., Prior, R.L. (1997). Oxygen radical absorbing capacity of anthocyanins. J. Agr. Food Chem., 45(2), 304–309.
Wu, B.H., Zhao, J.B., Chen, J., Xi, H.F., Jiang, Q., Li, S.H. (2012). Maternal inheritance of sugars and acids in peach (P. persica (L.) Batsch) fruit. Euphytica, 188, 333–345.
Xie, L., Ye, X., Liu, D., Ying, Y. (2011). Prediction of titratable acidity, malic acid, and citric acid in bayberry fruit by near-infrared spectroscopy. Food Res. Int., 44, 2198–204.
Yildiz, O., Alpaslan, M. (2012). Properties of rose hip marmalades. Food Technol. Biotech., 50, 98–106.
Yoo, K.M., Lee, C.H., Lee, H., Moon, B., Lee, C.Y. (2008). Relative antioxidant and cytoprotective of common herbs. Food Chem., 106, 926–936.
Yoruk, I.H., Turker, M., Kazankaya, A., Erez, M.E., Battal, P., Celik, F. (2008). Fatty acid, sugar and vitamin contents in rose hip species. Asian J. Chem., 20(2), 1357–1364.
Zocca, F., Lomolino, G., Lante, A. (2011). Dog rose and pomegranate extracts as agents to control enzymatic browning. Food Res. Int., 44, 957–963.

Downloads

Download data is not yet available.

Podobne artykuły

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.