Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 19 Nr 5 (2020)

Artykuły

PHYTOCHEMICAL ACCUMULATION WITH PHOTOMORPHOGENESIS AND PHYSIOLOGY OF SALVIA OFFICINALIS L.

DOI: https://doi.org/10.24326/asphc.2020.5.11
Przesłane: 14 marca 2019
Opublikowane: 2020-10-30

Abstrakt

We have investigated the leaf development of sage including the stomata, trichome and clorophyll parameters, their response, and the interaction of the relationship between these parameters and quantity and content of the phytochemicals in the plant with different photoperiod applications. Sage plants were exposed to short-dat, middle-day and long-day conditions in a controlled environment for 3 months. To confirm the morphological responses of stomata in response to photoperiod, stomatal density, stomatal sizes (Lg/Wg), stomatal area and relative stomatal area on both leaf surfaces were determined using SEM analyses. Phytochemicals parameters were determined using SPME and GS/MS analyses. Light period caused significant changes in morphoparameters on both surfaces of leaves. Significant changes in pythochemical quantity and content of sage were observed as well. In the light of the morphologic data such as plant growth, leaf surface area, stomatal and trichome parameters, chlorophyll and phytochemical content gathered from sage plants exposed to different photoperiod lengths, we hereby describe the circadian rhytm mechanism of the plant.

Bibliografia

  1. Azoulay‐Shemer, T., Schwankl, N., Rog, I., Moshelion, M., Schroeder, J.I. (2018). Starch biosynthesis by AGP ase, but not starch degradation by BAM 1/3 and SEX 1, is rate‐limiting for CO 2‐regulated stomatal movements under short‐day conditions. FEBS Letters, 592(16), 2739–2759. DOI: 10.1002/1873-3468.13198
  2. Carvalho, I.S., Cavaco, T., Carvalho, L.M., Duque, P. (2010). Effect of photoperiod on flavonoid pathway activity in sweet potato (Ipomoea batatas (L.) Lam.) leaves. Food Chem., 118, 384–390. DOI: 10.1016/j.foodchem.2009.05.005
  3. Chen, Y., Chen, Y., Guo, Q., Zhu, G., Wang, C., Liu, Z. (2017). Growth, physiological responses and secondary metabolite production in Pinellia ternata under different light intensities. Pak. J. Bot., 49(5), 1709–1716.
  4. Chen, Z.C., Feng, J.X., Wan, X.C. (2018). Stomatal behaviours of aspen (Populus tremuloides) plants in response to low root temperature in Hydroponics. Russ. J. Plant Physiol., 65, 512–517. DOI: 10.1134/S1021443718040106
  5. Chuang, Y.C., Lee, M.C., Chang, Y.L., Chen, W.H., Chen, H.H. (2017). Diurnal regulation of the floral scent emission by light and circadian rhythm in the Phalaenopsis orchids. Bot. Stud., 58, 50. DOI: 10.1186%2Fs40529-017-0204-8
  6. Coutinho, I.D., Henning, L.M.M., Döpp, S.A., Nepomuceno, A., Moraes, L.A.C., Marcolino-Gomes, J., Colnago, L.A. (2018). Flooded soybean metabolomic analysis reveals important primary and secondary metabolites involved in the hypoxia stress response and tolerance. Environ. Exp. Bot., 153, 176–187. DOI: 10.1016/j.envexpbot.2018.05.018
  7. Edwards, K.D., Takata, N., Johansson, M., Jurca, M., Novák, O., Hényková, E., Ljung, K. (2018). Circadian clock components control daily growth activities by modulating cytokinin levels and cell division‐associated gene expression in Populus trees. Plant Cell Environ., 41, 1468–1482. DOI: 10.1111/pce.13185
  8. Escobar-Bravo, R., Ruijgrok, J., Kim, H.K., Grosser, K., Van Dam, N.M., Klinkhamer, P.G., Leiss, K.A. (2018). Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato. Plant Cell Physiol., 59(12), 2462–2475. DOI: 10.1093/pcp/pcy166
  9. Gao, Q., Kane, N.C., Hulke, B., Reinert, S., Pogoda, C., Tittes, S., Prasifka, J. (2017). Genetic architecture of capitate glandular trichome density in florets of domesticated sunflower (Helianthus annuus L.). Front. Plant Sci., 8, 2227. DOI: 10.3389/fpls.2017.02227
  10. García‐Plazaola, J.I., Fernández‐Marín, B., Ferrio, J.P., Alday, J.G., Hoch, G., Landais, D., Roy, J. (2017). Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant Cell Environ., 40, 1153–1162. DOI: 10.1111/pce.12909
  11. Gibon, Y., Bläsing, O.E., Palacios‐Rojas, N., Pankovic, D., Hendriks, J.H., Fisahn, J., Stitt, M. (2004). Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post‐translational activation of ADP‐glucose pyrophosphorylase in the following light period. Plant J., 39, 847–862. DOI: 10.1111/j.1365-313X.2004.02173.x
  12. Graf, A., Smith, A.M. (2011). Starch and the clock: the dark side of plant productivity. Trends Plant Sci., 16(3), 169–175. DOI: 10.1016/j.tplants.2010.12.003
  13. Greenham, K., McClung, C.R. (2015). Integrating circadian dynamics with physiological processes in plants. Nat. Rev. Genet., 16, 598–610. DOI: 10.1038/nrg3976
  14. Gupta, V.K., Fakhri, A., Agarwal, S., Ahmadi, E., Nejad, P.A. (2017). Synthesis and characterization of MnO2/NiO nanocomposites for photocatalysis of tetracycline antibiotic and modification with guanidine for carriers of caffeic acid phenethyl ester-an anticancer drug. J. Photochem. Photobiol. B., 174, 235–242. DOI: 10.1016/j.jphotobiol.2017.08.006
  15. Goodspeed, D., Liu, J.D., Chehab, E.W., Sheng, Z., Francisco, M., Kliebenstein, D.J., Braam, J. (2013). Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling. Curr. Biol., 23, 1235–1241. DOI: 10.1016/j.cub.2013.05.034
  16. Hendel-Rahmanim, K., Masci, T., Vainstein, A., Weiss, D. (2007). Diurnal regulation of scent emission in rose flowers. Planta, 226, 1491–1499. DOI: 10.1007/s00425-007-0582-3
  17. Ishihara, H., Obata, T., Sulpice, R., Alisdair, R.F., Stitt, M. (2015). Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. Plant Physiol., 168(1), 74–93. DOI: 10.1104/pp.15.00209
  18. Khan, T., Abbasi, B.H., Khan, M.A. (2018). The interplay between light, plant growth regulators and elicitors on growth and secondary metabolism in cell cultures of Fagonia indica. J. Photochem. Photobiol. B., 185, 153–160. DOI: 10.1016/j.jphotobiol.2018.06.002
  19. Kerwin, R.E., Jimenez-Gomez, J.M., Fulop, D., Harmer, S.L., Maloof, J.N., Kliebenstein, D.J. (2011). Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell, 23, 471–485. DOI: 10.1105/tpc.110.082065
  20. Khayyat, S.A., Roselin, L.S. (2018). Recent progress in photochemical reaction on main components of some essential oils. J. Saudi Chem. Soc., 22, 855–875. DOI: 10.1016/j.jscs.2018.01.008
  21. Kjær, A., Grevsen, K., Jensen, M. (2012). Effect of external stress on density and size of glandular trichomes in full-grown Artemisia annua, the source of anti-malarial artemisinin. AoB. Plants, 18. DOI: 10.1093%2Faobpla%2Fpls018
  22. Koutsaviti, A., Antonopoulou, V., Vlassi, A., Antonatos, S., Michaelakis, A., Papachristos, D.P., Tzakou, O. (2018). Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). J. Pest Sci., 91, 873–886.
  23. McClung, C.R. (2008). Comes a time. Curr. Opin. Plant Biol., 11(5), 514–520. DOI: 10.1016/j.pbi.2008.06.010
  24. Orcen, N., Nazarian, G., Gharibkhani, M. (2013). The responses of stomatal parameters and SPAD value in Asian tobacco exposed to chromium. Pol. J. Environ. Stud., 22(5), 1441–1447.
  25. Martínez-Natarén, D.A., Villalobos-Perera, P.A., Munguía-Rosas, M.A. (2018). Morphology and density of glandular trichomes of Ocimum campechianum and Ruellia nudiflora in contrasting light environments: A scanning electron microscopy study. Flora, 248, 28–33. DOI: 10.1016/j.flora.2018.08.011
  26. Mengin, V., Alexandre Moraes, T., Sulpice, R., Krohn, N., Encke, B., Stitt, M. (2017). Photosynthate partitioning to starch in Arabidopsis thaliana is insensitive to light intensity but sensitive to photoperiod due to a restriction on growth in the light in short photoperiods. Plant Cell Environ., 40, 2608–2627. DOI: 10.1111/pce.13000
  27. Muir, C.D. (2018). Light and growth form interact to shape stomatal ratio among British angiosperms. New Phytol., 218, 242–252. DOI: 10.1111/nph.14956
  28. Nomoto, Y., Kubozono, S., Yamashino, T., Nakamichi, N., Mizuno, T. (2012). Circadian clock-and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol., 53(11), 1950–1964. DOI: 10.1093/pcp/pcs137
  29. Oh, S., Warnasooriya, S.N., Montgomery, B.L. (2014). Mesophyll-localized phytochromes gate stress- and light-inducible anthocyanin accumulation in Arabidopsis thaliana. Plant Signal. Behav., 9, e28013. DOI: 10.4161/psb.28013
  30. Pan, W.J., Wang, X., Deng, Y.R., Li, J.H., Chen, W., Chiang, J.Y., Zheng, L. (2015). Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging. Sci. Rep., 5, 11108. DOI: 10.1038/srep11108
  31. Pandey, S.K., Singh, H. (2011). A simple, cost-effective method for leaf area estimation. J. Bot., 2011, 6. DOI: 10.1155/2011/658240
  32. Pokhilko, A., Flis, A., Sulpice, R., Stitt, M., Ebenho, O. (2014). Adjustment of carbon fluxes to light conditions regulates the daily turnover of starch in plants: a computational model. Mol. BioSyst., 10(3), 613–627. DOI: 10.1039/C3MB70459A
  33. Rengifo, E., Urich, R., Herrera, A. (2002). Water relations and leaf anatomy of the tropical species, Jatropha gossypifolia and Alternanthera crucis, grown under elevated CO2 concentration. Photosynthetica, 40, 397–403. DOI: 10.1023/A:1022679109425
  34. Rguez, S., Msaada, K., Daami-Remadi, M., Chayeb, I., Bettaieb Rebey, I., Hammami, M., Hamrouni-Sellami, I. (2019). Chemical composition and biological activities of essential oils of Salvia officinalis aerial parts as affected by diurnal variations. Plant Biosyst., 153(2), 264–272. DOI: 10.1080/11263504.2018.1473305
  35. Robertson, F.C., Skeffington, A.W., Gardner, M.J., Webb, A.A. (2009). Interactions between circadian and hormonal signalling in plants. Plant Mol. Biol., 69(4), 419–427. DOI: 10.1007/s11103-008-9407-4
  36. Seo, P.J., Mas, P. (2015). Stressing the role of the plant circadian clock. Trends Plant Sci., 20(4), 230–237. DOI: 10.1016/j.tplants.2015.01.001
  37. Souza, M.A.A.D., Santos, L.A.D., Brito, D.M.D., Rocha, J.F., Castro, R.N., Fernandes, M.S., Souza, S.R.D. (2016). Influence of light intensity on glandular trichome density, gene expression and essential oil of menthol mint (Mentha arvensis L.). J. Essent. Oil Res., 28, 138–145.
  38. Smith, A.M., Stitt, M. (2007). Coordination of carbon supply and plant growth. Plant Cell Environ., 30(9), 1126–1149. DOI: 10.1111/j.1365-3040.2007.01708.x
  39. Smith, A.M., Zeeman, S.C., Smith, S.M. (2005). Starch degradation. Annu. Rev. Plant Biol., 56, 73–98. DOI: 10.1146/annurev.arplant.56.032604.144257
  40. Sheidai, M., Poode, Z.M., Koohdar, F., Talebi, S.M. (2018). Infra-specific morphological, anatomical and genetic variations in Lallemantia peltata (L.) Fisch. & CA Mey. (Lamiaceae). Acta Biol. Sib., 4, 85–93. DOI: 10.14258/abs.v4i3.4412
  41. Tran, T.T. (2018). The Effect of Light Exposure on the Total Chlorophyll Content, Chl a/b Ratio, and Car/chl Ratio in the Barks of Fraxinus latifolia Seedlings. University Honors Theses. Paper 575. DOI: 10.15760/honors.583
  42. Tkalec, M., Doboš, M., Babić, M., Jurak, E. (2015). The acclimation of carnivorous round-leaved sundew (Drosera rotundifolia L.) to solar radiation. Acta Physiol. Plant., 37, 78. DOI: 10.1007/s11738-015-1827-6
  43. Turner, G.W., Gershenzon, J., Croteau, R.B. (2000). Development of peltate glandular trichomes of peppermint. Plant Physiol., 124(2), 665–680. DOI: 10.1104/pp.124.2.665
  44. Wei, Z.F., Zhao, R.N., Dong, L.J., Zhao, X.Y., Su, J.X., Zhao, M., Zhang, L.J. (2018). Dual-cooled solvent-free microwave extraction of Salvia officinalis L. essential oil and evaluation of its antimicrobial activity. Ind. Crops Prod., 120, 71–76. DOI: 10.1016/j.indcrop.2018.04.058
  45. Zhang, Q., Liu, M., Ruan, J. (2017). Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biol., 17, 64. DOI: 10.1186/s12870-017-1012-8

Downloads

Download data is not yet available.

Podobne artykuły

1 2 3 4 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.