Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 21 Nr 3 (2022)

Artykuły

STUDY ON in vitro INDUCTION OF ROOTING AND CHANGES IN ENDOGENOUS HORMONE CONTENT OF Lagerstroemia indica ‘ZIJINGLING’

DOI: https://doi.org/10.24326/asphc.2022.3.4
Przesłane: 11 października 2021
Opublikowane: 2022-06-30

Abstrakt

Different media had different effects on the induction of rooting of Lagerstroemia indica ‘Zijingling’. The aims of this study were to identify the best rooting medium, determine the changes in endogenous hormone content in aseptic seedlings of ‘Zijingling’, and then analyze its role in the rooting process, to improve the rooting rate. Using a test tube seedling of ‘Zijingling’ as the experimental material, the tissue cells were observed via paraffin sectioning, and the changes in endogenous hormone content during the rooting process were determined using high-performance liquid chromatography. The results showed that 1/2 MS Medium had the most significant effect on rooting in the basic medium. The promoting effects of different auxins on rooting decreased in magnitude in the order 3-Indolebutyric acid (IBA) > Naphthalene acetic acid (NAA)> Indole-3-aceticacid (IAA). The optimal rooting medium was 1/2 MS + 0.6 mg L-1 IBA+ 15 g L-1 sucrose + 5 g L-1 agar + 200 mg L-1 activated carbon , and the highest induction rate of adventitious roots was 92.5%. The rooting of ‘Zijingling’ is classified as a primordial type of induced rooting. Exogenous IBA content promoted an increase in endogenous IAA and Gibberellic acid (GA3) contents. High contents of IAA, GA3, and Abscisic acid (ABA) and low content of Zeatin riboside (ZR) promoted the growth of adventitious roots, whereas high contents of IAA and ZR, and low contents of GA3 and ABA were required for the induction of root primordia. High levels of IAA/ZR and low levels of IAA/ABA promoted the differentiation of root primordia. However, low levels of IAA/ZR and high levels of IAA/ABA promoted adventitious root elongation.

Bibliografia

  1. Bai, T., Dong, Z., Zheng, X., Song, S., Jiao, J., Wang, M., Song, C. (2020). Auxin and its interaction with ethylene control adventitious root formation and development in apple rootstock. Front. Plant Sci., 11, 574881. https://doi.org/10.3389/fpls.2020.574881 DOI: https://doi.org/10.3389/fpls.2020.574881
  2. Benková, E., Hejátko, J. (2009). Hormone interactions at the root apical meristem. Plant Mol. Biol., 69, 383. https://doi.org/10.1007/s11103-008-9393-6 DOI: https://doi.org/10.1007/s11103-008-9393-6
  3. Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115(5), 591–602. https://doi.org/10.1016/s0092-8674(03)00924-3 DOI: https://doi.org/10.1016/S0092-8674(03)00924-3
  4. Blakesley, D., Weston, G.D., Hall, J.F. (1991). The role of endogenous auxin in root initiation. Plant Growth Regul., 10(4), 341–353. https://doi.org/10.1007/bf00024593 DOI: https://doi.org/10.1007/BF00024593
  5. Bouza, L., Sotta, B., Bonnet, M., Jacques, M., Arnaud, Y. (1992). Hormone content and meristematic activity of Paeonia sufruticosa Andr. cv. ‘Madame de Vatry’ vitroplants during in vitro rooting. Acta Hortic., 320(29), 213–216. https://doi.org/10.17660/ActaHortic.1992.320.29 DOI: https://doi.org/10.17660/ActaHortic.1992.320.29
  6. Cai, N., Wang, X.M., Li, Y.X., Zeng, H.J., Qiao, Z.Q. (2016). Establishment of tissue culture and rapid propagation system of Lagerstroemia indica ‘Xiaoming 1’. Chinese Agric. Sci. Bull., 1, 22–27 [in Chinese]. https://doi.org/10.11924/j.issn.1000-6850.casb15100075
  7. Chen, L.Y., Zheng, Y., Chen, L.G., Rong, J.D., Zheng, Y.S. (2011). Study on rooting culture and changes of endogenous hormone content of Rhododendron hybridum. J. For Environ, 31, 131–135 [in Chinese]. https://doi.org/10.13324/j.cnki.jfcf.2011.02.011
  8. Chen, Y.J., Cui, Y.Y., Zhang, X.M., Deng, X.M. (2015). Tissue culture and rapid propagation of Lagerstroemia indica ‘pink Velour’. Plant Physiol. J., 51, 882–886 [in Chinese]. https://doi.org/10.13592/j.cnki.ppj.2015.0160
  9. Corredoira, E., Costa, R.L. (2021). Application of tissue culture in plant reproduction. Forests, 12, 342. https://doi.org/10.3390/f12030342 DOI: https://doi.org/10.3390/f12030342
  10. Das, S., Sultana, K.W., Chandra, I. (2020). In vitro micropropagation of Basilicum polystachyon (L.) Moench and identification of endogenous auxin through HPLC. Plant Cell Tissue Organ Cult., 141, 633–641. https://doi.org/10.1007/s11240-020-01824-3 DOI: https://doi.org/10.1007/s11240-020-01824-3
  11. Díaz-Sala, C. (2021). Adventitious root formation in tree species. Plants, 10, 486. https://doi.org/10.3390/plants10030486 DOI: https://doi.org/10.3390/plants10030486
  12. Driver, J.A., Kuniyuki, A.H. (1984). In vitro propagation of Paradox walnut rootstock. HortSci., 19, 507–509. DOI: https://doi.org/10.21273/HORTSCI.19.4.507
  13. Duan, L.J., Li, G.R., Tong, J., Ye, Y.M. (2013). Study on rapid propagation system of Lagerstroemia indica stem segments in vitro. Acta Agric. Univ. Jiangxiensis, 35, 709–714. https://doi.org/10.13836/j.jjau.2013125
  14. Eymar, E., Alegre, J., Toribio, M., López-Vela, D. (2000). Effect of activated charcoal and 6-benzyladenine on in vitro nitrogen uptake by Lagerstroemia indica. Plant Cell, Tissue Organ Cult., 63, 57–65. https://doi.org/10.1023/A:1006471519609 DOI: https://doi.org/10.1023/A:1006471519609
  15. Faisal, M., Naseem, A., Mohammad, A., Abdulrahman, A.A., Ahmad, A.Q. (2017). Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems. Saudi J. Biol. Sci., 25(2), 273–277. https://doi.org/10.1016/j.sjbs.2017.09.009 DOI: https://doi.org/10.1016/j.sjbs.2017.09.009
  16. Fattorini, L., Veloccia, A., Della Rovere, F., D’Angeli, S., Falasca, G., Altamura, M.M. (2017). Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biol., 17(1), 121. https://doi.org/10.1186/s12870-017-1071-x DOI: https://doi.org/10.1186/s12870-017-1071-x
  17. Fu, X., Harberd, N. (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 421, 740–743. https://doi.org/10.1038/nature01387 DOI: https://doi.org/10.1038/nature01387
  18. Fu, Z., Xu, M., Wang, H., Wang, E., Li, Y., Wang, L., Gao, J., Zhang, J., Yuan, Xin, Zhang, H. (2021). Analysis of the transcriptome and related physiological indicators of tree peony (Paeonia suffruticosa Andr.) plantlets before and after rooting in vitro. Plant Cell Tissue Organ Cult., 147, 529–543. https://doi.org/10.1007/s11240-021-02145-9 DOI: https://doi.org/10.1007/s11240-021-02145-9
  19. Gubler, F., Jacobsen, J.V. (1992). Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell, 4(11), 1435–1441. https://doi.org/10.1105/tpc.4.11.1435 DOI: https://doi.org/10.1105/tpc.4.11.1435
  20. Guo, Y.X., Zhao, Y.Y., Zhang, M., Zhang, L.Y. (2019). Development of a novel in vitro rooting culture system for the micropropagation of highbush blueberry (Vaccinium corymbosum) seedlings. Plant Cell Tissue Organ Cult., 139, 615–620. https://doi.org/10.1007/s11240-019-01702-7 DOI: https://doi.org/10.1007/s11240-019-01702-7
  21. Haberlandt, G. (1902). Culturversuche mit isolierten Pflanzenzellen. In: Plant tissue culture, Laimer, M., Rücker, W. (eds.). Springer, Vienna. https://doi.org/10.1007/978-3-7091-6040-4_1 DOI: https://doi.org/10.1007/978-3-7091-6040-4_1
  22. Hartmann, H.T., Kester, D.E., Davies, F.T. (1990). Anatomical and physiological basis of propagation by cuttings. In: Plant propagation, principles and practices. Inter Edit, London, 199–225.
  23. Huang, Q.C. (1984). Axillary bud culture of Lagerstroemia indica. Plant Physiol. J., 3, 44 [in Chinese]. https://doi.org/10.13592/j.cnki.ppj.1984.03.013
  24. Jawahir, V., Zolman, B.K. (2021). Long chain acyl CoA synthetase 4 catalyzes the first step in peroxisomal indole-3-butyric acid to IAA conversion, Plant Physiol., 185(1), 120–136. https://doi.org/10.1093/plphys/kiaa002 DOI: https://doi.org/10.1093/plphys/kiaa002
  25. Jiang, L., Guan, X.C. (2000). Plant hormones and adventitious root formation. Bull. Biol., 11, 17–19 [in Chinese]. https://doi.org/CNKI:SUN:SWXT.0.2000-11-009
  26. Jiang, X.H., Song, G., Zhang, H., Cao, R., Guan, B., Liu, G. (2004). Tissue culture and rapid propagation of Lagerstroemia indica. Plant Physiol. J., 6, 707 [in Chinese]. https://doi.org/10.13592/j.cnki.ppj.2004.06.016
  27. Joshi, M., Ginzberg, I. (2021). Adventitious root formation in crops – Potato as an example. Physiol. Plant., 172, 124–133. https://doi.org/10.1111/ppl.13305 DOI: https://doi.org/10.1111/ppl.13305
  28. Liu, G.B., Zhao, J.Z., Zhang, Y.P., Liao, T., Guo, L.Q., Cao, J. (2020). Study on adventitious root formation mode of Platycladus orientalis cutting [J]. Acta Bot. Boreali-Occident Sin 40: 987–996 [in Chinese]. https://doi.org/10.11929/j.swfu.201806007
  29. Li, H.H., Pan, R.C. (1993). Hormone control of adventitious rooting in mung bean stem cuttings. XV International Botanical Congress, Japan Pacifico Yokohama. 6183.
  30. Li, X., Li, G.Z., Yang, L., Zhao, P., Ding, Y. (2020). Progress in tissue culture of the genus Vaccinium. Plant Physiol. J. 56, 921–930 [in Chinese]. https://doi.org/10.13592/j.cnki.ppj.2019.0613
  31. Lloyd, G., McCown, B.H. (1980). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Prop. Soc. Comb. Proc., 30, 421–427. Available: https://ipps.org/search-advanced/?q=Commercially feasible+micropropagation+of+mountain+laurel%2C+Kalmia+latifolia%2C+by+use+of+shoot+tip+culture&filterby=All&search=Search&submit=submit
  32. Lohar, D.P., Schaff, J.E., Laskey, J.G., Kieber, J.J., Bilyeu, K.D., Bird, D.M. (2004). Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant J., 38, 203–214. https://doi.org/10.1111/j.1365-313X.2004.02038.x DOI: https://doi.org/10.1111/j.1365-313X.2004.02038.x
  33. Müller, B., Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453, 1094–1097. https://doi.org/10.1038/nature06943 DOI: https://doi.org/10.1038/nature06943
  34. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  35. Negishi, N., Nakahama, K., Urata. N., Kojima, M., Sakakibara, H., Kawaoka, A. (2014). Hormone level analysis on adventitious root formation in Eucalyptus globulus. New Forest, 45, 577–587. https://doi.org/10.1007/s11056-014-9420-1 DOI: https://doi.org/10.1007/s11056-014-9420-1
  36. Niranjan, M.H., Sudarshana, M.S. (2005). In vitro response of encapsulated somatic embryos of Largerstroemia indica L.. Indian J. Exp. Biol., 43, 552–554.
  37. Phillips, G.C., Garda, M. (2019). Plant tissue culture media and practices: an overview. In vitro Cell. Dev. Biol., Plant 55, 242–257. https://doi.org/10.1007/s11627-019-09983-5 DOI: https://doi.org/10.1007/s11627-019-09983-5
  38. Qi, Y.S., Zhang, Z.H., Wang, T.K., Du, G.Q., Zhang, J.Z. (2009). Changes of endogenous hormones in adventitious root formation in soft-wood cuttings of autotetraploid Vitis vinifera L.. Acta Hortic. Sin., 36, 565–570. https://doi.org/10.16420/j.issn.0513-353x.2009.04.014
  39. Qiao, Z.Q., Wang, X.M., Zeng, H.J., Li, Y.X., Cai, N., Wang, X.Y. (2015). Changes of endogenous hormone content in cutting of sterile Lagerstroemia indica ‘Xiangyun’. Hunan Sci. Tech., 42, 49–53. https://doi.org/10.3969/j.issn.1003-5710.2015.01.012
  40. Rao, D.D. (2020). Tissue culture and changes of endogenous hormone content of Lagerstroemia indica New Variety ‘Ziyu’. Cent. South Univ. For. Technol., 2 [in Chinese]. https://doi.org/10.27662/d.cnki.gznlc.2020.000478
  41. Reid, J.B., Davidson, S.E., Ross, J.J. (2011). Auxin acts independently of DELLA proteins in regulating gibberellin levels, Plant Signal. Behav., 6(3), 406–408. https://doi.org/10.4161/psb.6.3.14352 DOI: https://doi.org/10.4161/psb.6.3.14352
  42. Růžička, K., Šimášková, M., Duclercq, J., Petrášek, J., Zažímalová, E., Simon, S., Friml, J., Montagu, M.E.V., Benková, E. (2009). Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl Acad. Sci. USA, 106(11), 4284–4289. https://doi.org/10.1073/pnas.0900060106 DOI: https://doi.org/10.1073/pnas.0900060106
  43. Skoog, F., Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol., 11, 118–130.
  44. Skoog, F., Tsui, C. (1948). Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am. J. Bot., 35, 782–787. https://doi.org/10.1002/j.1537-2197.1948.tb08148.x DOI: https://doi.org/10.1002/j.1537-2197.1948.tb08148.x
  45. Song, P.F., Chen, H.J., Jiang, Y.Q., Hong, Y., Qi, X.J. (2014). Studies on the morphology and anatomy of Softwood Cutting Rooting of Vaccinium ashei Reade. J. Zhejiang Agr. Sci. 4, 505–508. https://doi.org/10.16178/j.issn.0528-9017.2014.04.029
  46. Sousa Costa, E. Jr, Melo Barbosa, M.S. de, Silva, C.M.A. da, Silva, R.C.S. da, Kiill, L.H.P., Beckmann-Cavalcante, M.Z. (2018). Vegetative propagation of Rhaphiodon echinus Schauer (Lamiaceae): effects of the period of cutting in rooting, cuttings arrangement and IBA concentrations for seedlings production. Ornam. Hortic. 24(3), 238–247. https://doi.org/10.14295/oh.v24i3.1232 DOI: https://doi.org/10.14295/oh.v24i3.1232
  47. Strzelecka, K. (2007). Anatomical structure and adventitious root formation in Rhododendron ponticum L. cuttings. Acta Sci. Pol. Hortorum Cultus, 6(2), 15–22. Available: https://czasopisma.up.lublin.pl/index.php/asphc/article/view/4208
  48. Stuepp, C.A., Wendling, I., Trueman, S.J., Koehler, H.S., Zuffellato-Ribas, K.C. (2017). The use of auxin quantification for understanding clonal tree propagation. Forests, 8, 27. https://doi.org/10.3390/f8010027 DOI: https://doi.org/10.3390/f8010027
  49. Su, Y.H., Liu, Y.B., Zhang, X.S. (2011). Auxin–cytokinin interaction regulates meristem development. Mol. Plant, 4(4), 616–625. https://doi.org/https://doi.org/10.1093/mp/ssr007 DOI: https://doi.org/10.1093/mp/ssr007
  50. Sun, T.T., Hu, B.Z., Chen, Y.X., Fu, H.B. (2008). Anatomical study on rooting process of softwood cutting of Rosa xanthina Lindl. J. Northeast Agric. Univ., 39, 53–56. https://doi.org/10.19720/j.cnki.issn.1005-9369.2008.07.013
  51. Teixeira da Silva, J.A., Zeng, S., Godoy-Hernández, G., Rivera-Madrid, R., Dobránszki, J. (2019). Bixa orellana L. (achiote) tissue culture: a review. In Vitro Cell. Dev. Biol. – Plant 55, 231–241. https://doi.org/10.1007/s11627-019-09969-3 DOI: https://doi.org/10.1007/s11627-019-09969-3
  52. Van der Krieken, W.M., Breteler, H., Visser, M., Mavridou, D. (1993). The role of the conversion of IBA into IAA on root regeneration in apple: Introduction of test system. Plant Cell Rep., 12, 203–206. https://doi.org/10.1007/BF00237054 DOI: https://doi.org/10.1007/BF00237054
  53. Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., Schmülling, T. (2003). Cytokinin-deficient transgenic arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 15(11), 2532–2550. https://doi.org/10.1105/tpc.014928 DOI: https://doi.org/10.1105/tpc.014928
  54. Yan, X., Tian, M., Liu, F., Wang, C., Zhang, Y. (2017). Hormonal and morphological changes during seed development of Cypripedium japonicum. Protoplasma, 254, 2315–2322. https://doi.org/10.1007/s00709-017-1128-6 DOI: https://doi.org/10.1007/s00709-017-1128-6
  55. Zeng, Q.Q., Han, Z.Q., Kang, X.Y. (2019). Adventitious shoot regeneration from leaf, petiole and root explants in triploid (Populus alba × P. glandulosa) × P. tomentosa. Plant Cell Tissue Organ Cult., 138, 121–130. https://doi.org/10.1007/s11240-019-01608-4 DOI: https://doi.org/10.1007/s11240-019-01608-4
  56. Zhang, Q., Luo, F., Liu, L., Guo, F.C. (2010). In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.). Plant Cell Tissue Organ Cult., 101, 41–47. https://doi.org/10.1007/s11240-009-9660-5 DOI: https://doi.org/10.1007/s11240-009-9660-5
  57. Zheng, J.B., Liu, Y.J., Pei, B.H., Qiang, X.N. (1991). The relationship between rooting and rooting of several woody plants and endogenous IAA and ABA. Physiol. Mol. Biol. Plants, 3, 313–316.
  58. Zhou, J., Zhang, L.J. (2010). Changes of endogenous hormone content in tissue culture seedlings of Hippophae rhamnoides L. J. Anhui Agric. Sci., 38(17). https://doi.org/10.13989/j.cnki.0517-6611.2010.17.118
  59. Zhou, X.M., Liu, Y.T., Zhao, X.Z., Song, Z.W., Wang, S. (2016). Rooting anatomy of hardwood cutting for Albizia julibrissin Duraxx. and activity change of related enzymes during rooting process. Bull. Bot. Res., 36, 58–61. https://doi.org/10.7525/j.issn.1673-5102.2016.01.008

Downloads

Download data is not yet available.

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.