Abstrakt
Plant responses to biotic and abiotic stresses are regulated by salicylic acid (SA), a signaling molecule. The goal of this study was to determine the efficacy of foliar SA treatments (0.25, 0.50, or 1.00 mM) in reducing salt stress in lettuce exposed to 100 mM NaCl. Salt-stressed plants given a foliar application of SA showed alleviation of the negative effects of salinity, resulting in higher growth performance (increases of 6%–198%). The positive impacts of SA were especially noticeable as an increase in the content of photosynthetic pigments, such as total chlorophyll (31–72%) and total carotenoids (49–141%). Application of SA also helped to reduce membrane damage, as seen by significantly lower levels of MDA (31–70%) in the leaves of salt-stressed lettuce plants. Moreover, the use of SA enhanced overall flavonoid and phenolic content, as well as nutrient absorption. SA treatment also increased the activities of antioxidant enzymes, such as ascorbate peroxidase, catalase, glutathione reductase, and superoxide dismutase, resulting in a considerable reduction in salt-induced oxidative damage. The most efficient SA application concentration was 0.50 mM. Overall, the use of SA as a foliar spray could be recommended as a long-term strategy for improving the defense systems of salt-stressed lettuce.
Bibliografia
- Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., Hernandez, J.A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 1–18. https://doi.org/10.3390/agronomy7010018
DOI: https://doi.org/10.3390/agronomy7010018
- Arnon, D.I. (1949). Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiol., 14, 1–15. https://doi.org/10.1104/pp.24.1.1
DOI: https://doi.org/10.1104/pp.24.1.1
- Behdad, A., Mohsenzadeh, S., Azizi, M. (2021). Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition. Rhizosphere, 17, 100319. https://doi.org/10.1016/j.rhisph.2021.100319
DOI: https://doi.org/10.1016/j.rhisph.2021.100319
- Bose, B., Choudhury, H., Tandon, P., Kumaria, S. (2017). Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. J. Photochem. Photobiol. B Biology, 173, 686–695. https://doi.org/10.1016/j.jphotobiol.2017.07.010
DOI: https://doi.org/10.1016/j.jphotobiol.2017.07.010
- Cakmak, I., Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol., 98, 1222–1226. https://doi.org/10.1104/pp.98.4.1222
DOI: https://doi.org/10.1104/pp.98.4.1222
- Da Silva Ribeiro, J.E., Vieira de Sousa, L., Iarley da Silva, T., Silva Nóbrega, J., Andrade Figueiredo, F.R., Alcântara Bruno, R.D.L., Bandeira de Albuquerque, M. (2020). Citrullus lanatus morphophysiological responses to the combination of salicylic acid and salinity stress. Braz. J. Agric. Sci./Rev. Bras. Ciênc. Agrár., 15(1), 1–13. https://doi.org/10.5039/agraria.v15i1a6638
DOI: https://doi.org/10.5039/agraria.v15i1a6638
- Dasgan, H.Y., Bayram, M., Kusvuran, S., Coban, A.G., Akhoundnejad, Y. (2018). Screening of tomatoes for their resistance to salinity and drought stress. J. Biol. Agric. Health., 8(24), 31– 37.
- El-Taher, A.M., El-Raouf, A., Hany, S., Osman, N.A., Azoz, S.N., Omar, M.A., Mahmoud, A.M. (2022). Effect of salt stress and foliar application of salicylic acid on morphological, biochemical, anatomical, and productivity characteristics of cowpea (Vigna unguiculata L.) plants. Plants, 11(1), 1–15. https://doi.org/10.3390/plants11010115
DOI: https://doi.org/10.3390/plants11010115
- Ergun, O., Dasgan, H.Y., Isık, O. (2018). Effects of microalgae Chlorella vulgaris on hydroponically grown lettuce. Acta Hortic., 1273, 169–176. https://doi.org/10.17660/ActaHortic.2020.1273.23
DOI: https://doi.org/10.17660/ActaHortic.2020.1273.23
- Faghih, S., Ghobadi, C., Zarei, A. (2017). Response of strawberry plant cv.‘Camarosa’ to salicylic acid and methyl jasmonate application under salt stress condition. J. Plant Growth Regul., 36(3), 651–659. https://doi.org/10.1007/s00344-017-9666-x
DOI: https://doi.org/10.1007/s00344-017-9666-x
- Gafur, M.A., Putra, E.T.S. (2019). Effect of drought stress in physiological oil palm seedling (Elaeis guineensis Jacq.) using calcium application. Asian J. Biol. Sci., 12, 550–556.
DOI: https://doi.org/10.3923/ajbs.2019.550.556
- Ghassemi-Golezani, K., Farhadi, N. (2021). The efficacy of salicylic acid levels on photosynthetic activity, growth, and essential oil content and composition of pennyroyal plants under salt stress. J. Plant Growth Regul., 1–13. https://doi.org/10.1007/s00344-021-10515-y
DOI: https://doi.org/10.1007/s00344-021-10515-y
- Hauser, F., Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters:
- a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ., 33(4), 552–565. https://doi.org/10.1111/j.1365-3040.2009.02056x
DOI: https://doi.org/10.1111/j.1365-3040.2009.02056.x
- Heath, R.L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
DOI: https://doi.org/10.1016/0003-9861(68)90654-1
- Heidarian, F., Roshandel, P. (2021). Salicylic acid improves tolerance against salt stress through boosting antioxidant defense system in black bean. Int. J. Hortic. Sci. Technol., 8(2), 175–189. https://doi.org/10.22059/IJHST.2020.297885.345
- Hussein, M.M., Rezk, A.I., El-Nasharty, A.B., Mehanna, H.M. (2015). Nutritional and growth response of canola plants to salicylic acid under salt stress conditions. Int. J. ChemTech Res., 8(6), 574–581.
- İbrahimova, U., Kumari, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Brestic, M. (2021). Progress in understanding salt stress response in plants using biotechnological tools. J. Biotech., 329, 180–191. https://doi.org/10.1016/j.jbiotec.2021.02.007
DOI: https://doi.org/10.1016/j.jbiotec.2021.02.007
- Jannesar, M., Seyedi, S.M., Niknam, V., Ghadirzadeh Khorzoghi, E., Ebrahimzadeh, H. (2021). Salicylic acid, as a positive regulator of isochorismate synthase, reduces the negative effect of salt stress on Pistacia vera L. by increasing photosynthetic pigments and inducing antioxidant activity. J. Plant Growth Regul., 1–12. https://doi.org/10.1007/s00344-021-10383-6
DOI: https://doi.org/10.1007/s00344-021-10383-6
- Jouyban, Z. (2012). The effects of salt stress on plant growth. Tech. J. Engineer. Appl. Sci., 2(1), 7–10.
- Khalifa, G.S., Abdelrassoul, M., Hegazi, A.M., Elsherif, M.H. (2016). Attenuation of negative effects of saline stress in two lettuce cultivars by salicylic acid and glycine betaine. Gesunde Pflanzen, 68(4), 177–189. https://doi.org/10.1007/s10343-016-0376-2
DOI: https://doi.org/10.1007/s10343-016-0376-2
- Kıran, S., Kusvuran, S., Ozkay, F., Ellialtıoglu, S.S. (2019). Change in physiological and biochemical parameters under drought stress in salt-tolerant and salt-susceptible eggplant genotypes. Turk. J. Agric. For., 43, 593–602. https://doi.org/10.3906/tar-1808-1
DOI: https://doi.org/10.3906/tar-1808-1
- Koo, Y.M., Heo, A.Y., Choi, H.W. (2020). Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J., 36(1), 1–10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
DOI: https://doi.org/10.5423/PPJ.RW.12.2019.0295
- Kusvuran, S. (2021). Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hortic. Plant J., 7(3), 221–231.
DOI: https://doi.org/10.1016/j.hpj.2021.03.007
- Lamnai, K., Anaya, F., Fghire, R., Zine, H., Wahbi, S., Loutfi, K. (2021). Impact of exogenous application of salicylic acid on growth, water status and antioxidant enzyme activity of strawberry plants (Fragaria vesca L.) under salt stress conditions. Gesunde Pflanzen, 73(4), 465–478.
DOI: https://doi.org/10.1007/s10343-021-00567-1
- Mohammadi, H., Hazrati, S., Janmohammadi, M. (2019). Approaches to enhance antioxidant defense in plants. In: Approaches for enhancing abiotic stress tolerance in plants, Hasanuzzaman, M., Nahar, K., Fujita, M., Oku, H., Islam, M.T. (eds). CRC Press, Taylor & Francis Group, Florida, 1–26.
DOI: https://doi.org/10.1201/9781351104722-15
- Munawar, A., Akram, N.A., Ahmad, A., Ashraf, M. (2019). Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Sci. Hortic, 254, 7–13. https://doi.org/10.1016/j.scienta.2019.04.072
DOI: https://doi.org/10.1016/j.scienta.2019.04.072
- Munns, R., Tester, M. (2008). Mechanisms of salinity tolerance. Ann. Rev. Plant Biol., 59, 651. https://doi.org/10.1146/annurev.arplant.59.032607.092911
DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Poór, P., Patyi, G., Takács, Z., Szekeres, A., Bódi, N., Bagyánszki, M., Tari, I. (2019). Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.). J. Plant Res., 132(2), 273–283. https://doi.org/10.1007/s10265-019-01085-y
DOI: https://doi.org/10.1007/s10265-019-01085-y
- Poór, P. (2020). Effects of salicylic acid on the metabolism of mitochondrial reactive oxygen species in plants. Biomolecules, 10(2), 341. https://doi.org/10.3390/biom10020341
DOI: https://doi.org/10.3390/biom10020341
- Rajabi Dehnavi, A., Zahedi, M., Razmjoo, J., Eshghizadeh, H. (2019). Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. J. Plant Nutr., 42(11–12), 1333–1349. https://doi.org/10.1080/01904167.2019.1617307
DOI: https://doi.org/10.1080/01904167.2019.1617307
- Rehman, Z., Hussain, A., Saleem, S., Khilji, S.A., Sajid, Z.A. (2022). Exogenous application of salicylic acid enhances salt stress tolerance in lemongrass (Cymbopogon flexuosus steud. wats). Pak. J. Bot., 54(2), 371–378. https://doi.org/10.30848/PJB2022-2(13)
DOI: https://doi.org/10.30848/PJB2022-2(13)
- Sabir, F.K., Sabir, A., Unal, S., Taytak, M., Kucukbasmaci, A., Bilgin, O.F. (2019). Postharvest quality extension of minimally processed table grapes by chitosan coating. Int. J. Fruit Sci., 19(4), 347–358. https://doi.org/10.1080/15538362.2018.1506961
DOI: https://doi.org/10.1080/15538362.2018.1506961
- Sarabi, B., Bolandnazar, S., Ghaderi, N., Ghashghaie, J. (2017). Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiol. Biochem., 119, 294–311. https://doi.org/10.1016/j.plaphy.2017.09.006
DOI: https://doi.org/10.1016/j.plaphy.2017.09.006
- Shaki, F., Maboud, H.E., Niknam, V. (2018). Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Curr. Plant Biol., 13, 16–22. https://doi.org/10.1016/j.cpb.2018.04.001
DOI: https://doi.org/10.1016/j.cpb.2018.04.001
- Singh, R., Upadhyay, A.K., Singh, D.P. (2018). Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicol. Environ. Saf., 148, 105–113. https://doi.org/10.1016/j.ecoenv.2017.10.008
DOI: https://doi.org/10.1016/j.ecoenv.2017.10.008
- Türkan, I., Bor, M., Özdemir, F., Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci., 168(1), 223–231. https://doi.org/10.1016/j.plantsci.2004.07.032
DOI: https://doi.org/10.1016/j.plantsci.2004.07.032
- Van Aken, O., Van Breusegem, F. (2015). Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci., 20(11), 754–766. https://doi.org/10.1016/j.tplants.2015.08.002
DOI: https://doi.org/10.1016/j.tplants.2015.08.002
- Vázquez, J.G., Hernández-Fernández, L., Hernández, L., Pérez-Bonachea, L., Campbell, R. (2021). Physiological and biochemical response of water lettuce (Pistia stratiotes) to short-term mild saline stress. J. Plant Physiol. Pathol., 9(10), 1–6.
- Yang, Y., Guo, Y. (2018). Unraveling salt stress signaling in plants. J. Integr. Plant Bio., 60(9), 796–804. https://doi.org/10.1111/jipb.12689
DOI: https://doi.org/10.1111/jipb.12689
Downloads
Download data is not yet available.
-
Musa Seymen,
Atilla Dursun,
Duran Yavuz,
Ertan Sait Kurtar,
Önder Türkmen,
Identification of water stress-tolerant edible pumpkin seed (Cucurbita pepo) genotypes using seed yield-based tolerance indices
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 22 Nr 4 (2023)
-
Sebnem Kusvuran,
H. Yildiz Dasgan,
DROUGHT INDUCED PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES IN Solanum lycopersicum GENOTYPES DIFFERING TO TOLERANCE
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 16 Nr 6 (2017)
-
Piotr Salachna,
Agnieszka Zawadzińska,
Cezary Podsiadło,
RESPONSE OF Ornithogalum saundersiae BAK. TO SALINITY STRESS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 15 Nr 1 (2016)
-
Robert Gruszecki,
Aneta Stawiarz,
Biostimulants containing amino acids in vegetable crop production
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 20 Nr 6 (2021)
-
Halil Samet,
Yakup Çikili,
Aysun Çavuşoğlu,
Combined effects of excess boron and salinity on the growth and ionic imbalance of lavandin (Lavandula × intermedia) plant
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 22 Nr 4 (2023)
-
Ersin Atay,
Bruno Hucbourg,
Aurore Drevet,
Pierre-Éric Lauri,
EFFECTS OF PREHARVEST DEFICIT IRRIGATION TREATMENTS IN COMBINATION WITH REDUCED NITROGEN FERTILIZATION ON ORCHARD PERFORMANCE OF NECTARINE WITH EMPHASIS ON POSTHARVEST DISEASES AND PRUNING WEIGHTS
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 18 Nr 1 (2019)
-
Ozlem Altuntas,
Hayriye Yıldız Dasgan,
Yelderem Akhoundnejad,
Ibrahim Kutalmıs Kutsal,
DOES SILICON INCREASE THE TOLERANCE OF A SENSITIVE PEPPER GENOTYPE TO SALT STRESS?
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 19 Nr 2 (2020)
-
Tomasz Spiżewski,
Włodzimierz Krzesiński,
Alina Kałużewicz,
Raghavendra Prasad,
Anna Zaworska,
THE EFFECT OF SPENT MUSHROOM SUBSTRATE ENRICHED WITH SELENIUM AND ZINC ON THE YIELD AND PHOTOSYNTHETIC PARAMETERS OF LETTUCE (Lactuca sativa L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 21 Nr 3 (2022)
-
Sibgha Noreen,
Ayesha Siddiq,
Kousar Hussain,
Shakeel Ahmad,
Mirza Hasanuzzaman,
FOLIAR APPLICATION OF SALICYLIC ACID WITH SALINITY STRESS ON PHYSIOLOGICAL AND BIOCHEMICAL ATTRIBUTES OF SUNFLOWER (Helianthus annuus L.) CROP
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 16 Nr 2 (2017)
-
Hamid Mohammadi,
Ahmad Aghaee,
Parya Pormohammad,
Mansour Ghorbanpour,
Saeid Hazrati,
Physiological reaction and chemical composition of Stachys schtschegleevii Sosn. essential oil under water deficit.
,
Acta Scientiarum Polonorum Hortorum Cultus: Tom 21 Nr 2 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.