Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin

Podłoże genetyczne biosyntezy laktonów seskwiterpenowych u Asteraceae. Praca przeglądowa

Magdalena Sozoniuk

Uniwersytet Przyrodniczy w Lublinie
https://orcid.org/0000-0003-2338-0707


Abstrakt

Rodzina Asteraceae jest bogatym źródłem wielu laktonów seskwiterpenowych. Te metabolity wtórne odznaczają się wielokierunkowym działaniem, w tym aktywnością przeciwnowotworową, przeciwzapalną czy przeciwdrobnoustrojową. Inżynieria metaboliczna jest obiecującym podejściem, które pozwala na zwiększenie produkcji laktonów seskwiterpenowych poprzez rekonstrukcję szlaku ich biosyntezy w systemach heterologicznych. Ponadto, ich produkcja  może zostać zwiększona w gatunkach roślin, w których naturalnie występują, poprzez nadekspresję genów zaangażowanych w szlak ich biosyntezy i/lub czynników transkrypcyjnych pozytywnie regulujących szlak. Każda z tych strategii wymaga szczegółowej wiedzy dotyczącej podłoża genetycznego szlaku biosyntezy laktonów seskwiterpenowych. Niniejsza praca przeglądowa podsumowuje badania molekularne dotyczące biosyntezy tych niezwykle cennych z punktu widzenia farmakologicznego metabolitów wtórnych.

Słowa kluczowe:

laktony seskwiterpenowe, geny szlaków biosyntezy, czynniki transkrypcyjne

Adekenov S.M., 2017. Sesquiterpene lactones with unusual structure. Their biogenesis and biological activity. Fitoterapia 121, 16–30. https://doi.org/10.1016/j.fitote.2017.05.017

Adekenova G.S., Shaikenova Zh.S., Chervyakova О.V., Zakarya K.D., Аdekenov S.М., 2021. The costunolide biosynthesis enzymes of Artemisia glabella Kar. et Kir.: Determination of the nucleotide sequences of the mRNA. Int. J. Plant Physiol. Biochem. 13(1), 9–18. https://doi.org/10.5897/IJPPB2020.0304

Agatonovic-Kustrin S., Morton D.W., 2018. The current and potential therapeutic uses of parthenolide. In: Studies in natural products chemistry, 58, 61–91. https://doi.org/10.1016/B978-0-444-64056-7.00003-9

Babaei G., Aziz S.G.G., Bazl M.R., Ansari M.H.K., 2021. A comprehensive review of anticancer mechanisms of action of alantolactone. Biomed. Pharmacother. 136, 111231. https://doi.org/10.1016/j.biopha.2021.111231

Bains S., Thakur V., Kaur J., Singh K., Kaur R., 2019. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Genomics 111(6), 1474–1482. https://doi.org/10.1016/j.ygeno.2018.09.022

Bennett M.H., Mansfield J.W., Lewis M.J., Beale M.H., 2002. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.). Phytochemistry 60(3), 255–261. https://doi.org/10.1016/S0031-9422(02)00103-6

Bogdanović M., Cankar K., Dragićević M., Bouwmeester H., Beekwilder J., Simonović A., Todorović S., 2020. Silencing of germacrene A synthase genes reduces guaianolide oxalate content in Cichorium intybus L. GM Crops Food, 11(1), 54–66. https://doi.org/10.1080/21645698.2019.1681868

Bouwmeester H.J., Kodde J., Verstappen F.W., Altug I.G., de Kraker J.W., Wallaart T.E., 2002. Isolation and characterization of two germacrene A synthase cDNA clones from chicory. Plant Physiol. 129(1), 134–144. https://doi.org/10.1104/pp.001024

Cankar K., van Houwelingen A., Bosch D., Sonke T., Bouwmeester H., Beekwilder J., 2011. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)–valencene. FEBS Letters 585(1), 178–182. https://doi.org/10.1016/j.febslet.2010.11.040

Chang Y.J., Song S.H., Park S.H., Kim S.U., 2000. Amorpha-4, 11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch. Biochem. Biophys. 383(2), 178–184. https://doi.org/10.1006/abbi.2000.2061

Chen M., Yan T., Shen Q., Lu X., Pan Q., Huang Y., Tang Y., Fu X., Liu M., Jiang W., Lv Z., Shi P., Ma Y., Hao X., Zhang L., Li L., Tang K., 2017. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol. 214(1), 304–316. https://doi.org/10.1111/nph.14373

Drogosz J., Janecka A., 2019. Helenalin-a sesquiterpene lactone with multidirectional activity. Curr. Drug Targets 20(4), 444–452. https://doi.org/10.2174/1389450119666181012125230

Eljounaidi K., Lichman B.R., 2020. Nature’s chemists: the discovery and engineering of phytochemical biosynthesis. Front. Chem. 8, 1041. https://doi.org/10.3389/fchem.2020.596479

Eljounaidi K., Cankar K., Comino C., Moglia A., Hehn A., Bourgaud F., Bouwmeesterc H., Meninf B., Lanteri S., Beekwilder J., 2014. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Sci. 223, 59–68. https://doi.org/10.1016/j.plantsci.2014.03.007

Fan W., Fan L., Peng C., Zhang Q., Wang L., Li L., Wang J., Zhang D., Peng W., Wu C., 2019.

Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: A review. Molecules 24(2), 359. https://doi.org/10.3390/molecules24020359

Frey M., Klaiber I., Conrad J., Spring O., 2020. CYP71BL9, the missing link in costunolide synthesis of sunflower. Phytochemistry 177, 112430. https://doi.org/10.1016/j.phytochem.2020.112430

Göpfert J.C., MacNevin G., Ro D.K., Spring O., 2009. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol. 9(1), 1–18. https://doi.org/10.1186/1471-2229-9-86

Ikezawa N., Göpfert J.C., Nguyen D.T., Kim S.U., O’Maille P.E., Spring O., Ro D.K., 2011. Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J. Biol. Chem. 286(24), 21601–21611. https://doi.org/10.1074/jbc.M110.216804

Kashkooli A.B., van der Krol A.R., Rabe P., Dickschat J.S., Bouwmeester H., 2019. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metab. Eng. 54, 12–23. https://doi.org/10.1016/j.ymben.2019.01.007

Kim D.Y., Choi B.Y., 2019. Costunolide—A bioactive sesquiterpene lactone with diverse therapeutic potential. Int. J. Mol. Sci. 20(12), 2926. https://doi.org/10.3390/ijms20122926

Li H., Li J., Liu M., Xie R., Zang Y., Li J., Aisa H.A., 2021. Guaianolide sesquiterpene lactones from Achillea millefolium L. Phytochemistry, 186, 112733. https://doi.org/10.1016/j.phytochem.2021.112733

Li Y., Chen F., Li Z., Li C., Zhang Y., 2016a. Identification and functional characterization of sesquiterpene synthases from Xanthium strumarium. Plant Cell Physiol. 57(3), 630–641. https://doi.org/10.1093/pcp/pcw019

Li Y., Gou J., Chen F., Li C., Zhang Y., 2016b. Comparative transcriptome analysis identifies putative genes involved in the biosynthesis of xanthanolides in Xanthium strumarium L. Front. Plant Sci. 7, 1317. https://doi.org/10.3389/fpls.2016.01317

Ling C., Zheng L., Yu X., Wang H., Wang C., Wu H., Zhang J., Yao P., Tai Y., Yuan Y., 2020. Cloning and functional analysis of three aphid alarm pheromone genes from German chamomile (Matricaria chamomilla L.). Plant Sci. 294, 110463. https://doi.org/10.1016/j.plantsci.2020.110463

Liu Q., Kashkooli A.B., Manzano D., Pateraki I., Richard L., Kolkman P., Lucas M.F., Guallar V., de Vos R.C.H., Franssen M.C.R., van der Krol A., Bouwmeester H., 2018. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nat. Commun. 9(1), 1–13. https://doi.org/10.1038/s41467-018-06565-8

Liu Q., Majdi M., Cankar K., Goedbloed M., Charnikhova T., Verstappen F.W., de Vos R.C.H., Beekwilder J., van der Krol S., Bouwmeester H.J., 2011. Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. PLoS One, 6(8), e23255. https://doi.org/10.1371/journal.pone.0023255

Liu Q., Manzano D., Tanić N., Pesic M., Bankovic J., Pateraki I., Ricard L., Ferrer A., de vos R., van der Krol S., Bouwmeester H., 2014. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab. Eng. 23, 145–153. https://doi.org/10.1016/j.ymben.2014.03.005

Lu X., Zhang L., Zhang F., Jiang W., Shen Q., Zhang L., Lv Z., Wang G., Tang K., 2013. AaORA, a trichome-specific AP 2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol. 198(4), 1191–1202. https://doi.org/10.1111/nph.12207

Ma D. M., Wang Z., Wang L., Alejos-Gonzales F., Sun M.A., Xie D.Y., 2015. A genome-wide scenario of terpene pathways in self-pollinated Artemisia annua. Mol. Plant 8(11), 1580–1598. https://doi.org/10.1016/j.molp.2015.07.004

Majdi M., Abdollahi M.R., Maroufi A., 2015. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium. Plant Cell Rep. 34(11), 1909–1918. https://doi.org/10.1007/s00299-015-1837-2

Majdi M., Ashengroph M., Abdollahi M.R., 2016. Sesquiterpene lactone engineering in microbial and plant platforms: parthenolide and artemisinin as case studies. Appl. Microbiol. Biotechnol. 100(3), 1041–1059. https://doi.org/10.1007/s00253-015-7128-6

Majdi M., Liu Q., Karimzadeh G., Malboobi M.A., Beekwilder J., Cankar K., de Vos R., Todorović S., Simonović A., Bouwmeester H., 2011. Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum parthenium L. Schulz Bip.). Phytochemistry 72(14–15), 1739–1750. https://doi.org/10.1016/j.phytochem.2011.04.021

Matos M.S., Anastácio J.D., Santos C.N.D., 2021. Sesquiterpene lactones: promising natural compounds to fight inflammation. Pharmaceutics 13(7), 991. https://doi.org/10.3390/pharmaceutics13070991

Matsushita Y., Kang W., Charlwood B. V., 1996. Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 172(2), 207–209. https://doi.org/10.1016/0378-1119(96)00054-6

Menin B., Comino C., Portis E., Moglia A., Cankar K., Bouwmeester H.J., Lanteri S., Beekwilder J., 2012. Genetic mapping and characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. Plant Sci. 190, 1–8. https://doi.org/10.1016/j.plantsci.2012.03.006

Mercke P., Bengtsson M., Bouwmeester H.J., Posthumus M.A., Brodelius P.E., 2000. Molecular cloning, expression, and characterization of amorpha-4, 11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 381(2), 173–180. https://doi.org/10.1006/abbi.2000.1962

Moujir L., Callies O., Sousa P., Sharopov F., Seca A.M., 2020. Applications of sesquiterpene lactones: A review of some potential success cases. Appl. Sci. 10(9), 3001. https://doi.org/10.3390/app10093001

Nguyen D.T., Göpfert J.C., Ikezawa N., MacNevin G., Kathiresan M., Conrad J., Spring O., Ro D.K., 2010. Biochemical conservation and evolution of germacrene A oxidase in Asteraceae. J. Biol. Chem. 285(22), 16588–16598. https://doi.org/10.1074/jbc.M110.111757

Numonov S., Sharopov F., Salimov A., Sukhrobov P., Atolikshoeva S., Safarzoda R., Habasi M., Aisa H.A., 2019. Assessment of artemisinin contents in selected Artemisia species from Tajikistan (central Asia). Medicines 6(1), 23. https://doi.org/10.3390/medicines6010023

Padilla-Gonzalez G.F., dos Santos F.A., Da Costa F.B., 2016. Sesquiterpene lactones: More than protective plant compounds with high toxicity. Crit. Rev. Plant Sci. 35(1), 18–37. https://doi.org/10.1080/07352689.2016.1145956

Pazouki L., Memari H.R., Kännaste A., Bichele R., Niinemets Ü., 2015. Germacrene A synthase in yarrow (Achillea millefolium) is an enzyme with mixed substrate specificity: gene cloning, functional characterization and expression analysis. Front. Plant Sci. 6, 111. https://doi.org/10.3389/fpls.2015.00111

Polichuk D., Teoh K.H., Zhang Y., Ellens K.W., Covello P.S., 2010. Nucleotide sequence encoding an alcohol dehydrogenease from Artemisia annua and uses thereof. Patent No. WO/2010/012074.

Puglia G.D., Prjibelski A.D., Vitale D., Bushmanova E., Schmid K.J., Raccuia S.A., 2020. Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.). BMC Genomics 21(1), 1–17. https://doi.org/10.1186/s12864-020-6670-5

Rasool S., Sharma B., 2014. Taraxacum officinale: a high value less known medicinal plant. Ann. Plant Sci. 3(12), 908–915.

Soetaert S.S., Van Neste C.M., Vandewoestyne M.L., Head S.R., Goossens A., Van Nieuwerburgh F.C., Deforce D.L., 2013. Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biol. 13(1), 1–14. https://doi.org/10.1186/1471-2229-13-220

Teoh K.H., Polichuk D.R., Reed D.W., Nowak G., Covello P.S., 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Letters 580(5), 1411–1416. https://doi.org/10.1016/j.febslet.2006.01.065

Teoh K.H., Polichuk D.R., Reed D.W., Covello P.S., 2009. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87(6), 635–642. https://doi.org/10.1139/B09-032

Testone G., Mele G., di Giacomo E., Tenore G.C., Gonnella M., Nicolodi C., Frugis G., Iannelli M.A., Arnesi G., Schiappa A., Biancari T., Giannino D., 2019. Transcriptome driven characterization of curly-and smooth-leafed endives reveals molecular differences in the sesquiterpenoid pathway. Hortic. Res. 6(1), 1–19. https://doi.org/10.1038/s41438-018-0066-6

Thakur V., Bains S., Kaur R., Singh K., 2021. Identification and characterization of SlbHLH, SlDof and SlWRKY transcription factors interacting with SlDPD gene involved in costunolide biosynthesis in Saussurea lappa. Int. J. Biol. Macromol. 173, 146–159. https://doi.org/10.1016/j.ijbiomac.2021.01.114

Thakur V., Bains S., Pathania S., Sharma S., Kaur R., Singh K., 2020. Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant- Saussurea lappa. Int. J. Biol. Macromol. 150, 52–67. https://doi.org/10.1016/j.ijbiomac.2020.01.312

Wang M., Qiu X., Pan X., Li C., 2021. Transcriptional factor-mediated regulation of active component biosynthesis in medicinal plants. Cur. Pharm. Biotechnol. 22(6), 848–866. https://doi.org/10.2174/1389201021666200622121809

Wani K.I., Choudhary S., Zehra A., Naeem M., Weathers P., Aftab T., 2021. Enhancing artemisinin content in and delivery from Artemisia annua: a review of alternative, classical, and transgenic approaches. Planta 254(2), 1–15. https://doi.org/10.1007/s00425-021-03676-3

Wu Z., Li L., Liu H., Yan X., Ma Y., Li Y., Chen T., Wang Ch., Xie L., Hao X., Kayani S.-I., Tang K., 2021. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant Sci. 308, 110920. https://doi.org/10.1016/j.plantsci.2021.110920

Xu H., Dickschat J.S., 2020. Germacrene A–A central intermediate in sesquiterpene biosynthesis. Chemistry (Weinheim an der Bergstrasse, Germany) 26(72), 17318. https://doi.org/10.1002/chem.202002163

Zhang Y., Teoh K.H., Reed D.W., Maes L., Goossens A., Olson D.J., Ross A.R, Covello P.S., 2008. The molecular cloning of artemisinic aldehyde Δ11 (13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. Journal of Biological Chemistry 283(31), 21501-21508. https://doi.org/10.1074/jbc.M803090200

Zhou Z., Tan H., Li Q., Li Q., Wang Y., Bu Q., Li Y., Wu Y., Chen W., Zhang L., 2020. TRICHOME AND ARTEMISININ REGULATOR 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. New Phytol. 228(3), 932–945. https://doi.org/10.1111/nph.16777


Opublikowane
19-11-2021



Magdalena Sozoniuk 
Uniwersytet Przyrodniczy w Lublinie https://orcid.org/0000-0003-2338-0707



Licencja

Artykuły są udostępniane na zasadach CC BY 4.0 (do 2020 r. na zasadach CC BY-NC-ND 4.0)..
Przysłanie artykułu do redakcji oznacza, że nie był on opublikowany wcześniej i nie jest rozpatrywany do publikacji gdzie indziej.

Autor podpisuje oświadczenie o oryginalności dzieła, wkładzie poszczególnych osób i źródle finansowania.

 

Czasopismo Agronomy Science przyjęło politykę samoarchiwizacji nazwaną przez bazę Sherpa Romeo drogą niebieską. Od 2021 r. autorzy mogą samoarchiwizować postprinty artykułów oraz wersje wydawnicze (zgodnie z licencją CC BY). Artykuły z lat wcześniejszych (udostępniane na licencji CC BY-NC-ND 4.0) mogą być samoarchiwizowane tylko w wersji wydawniczej.

 


Inne teksty tego samego autora