Incidence of postharvest fungal diseases of apples in integrated fruit production

Marek Franciszek Grabowski

Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow Wydział Biotechnologii i Ogrodnictwa, Al. 29-Listopada 54, 31-425 Krakow, Poland
http://orcid.org/0000-0003-2286-2675


Abstract

In 2014–2017 an investigation was carried out into the occurrence of fungal storage diseases of five apple varieties (Red Jonaprince, Gala, Golden Delicious, Gloster and Ligol) in the Sandomierz orchard region. The fruit was stored at a CA cold storage room with ULO controlled atmosphere for six months. Occurrence of eight storage diseases was found. The most frequently occurring disease was bull’s eye rot and the losses caused thereby were even 24% of the affected fruit. The cultivars most susceptible to this disease were the Golden Delicious and Ligol apples; the least susceptible were the Gloster ones. The apples were significantly less affected by the fungi that cause brown rot, grey mould rot, blue mould rot and apple scab. Very seldom were the symptoms of calyx end rot, mouldy core and core rot, and anthracnose. Varying severity of infection of the varieties was noted in each season of observation.

Keywords:

apple, postharvest fungal diseases, CA/ULO long storage, identification, incidence, integrated fruit production, cultivars

Aquilar, C.G. (2017). Timing of apple fruit infection by Neofabraea perennans and Neofabraea kienholzii in relation to bull’s eye rot development in stored apple fruit. Plant Dis., 101, 800–806. DOI: 10.1094/PDIS-11-16-1637-RE

Baroncelli, R., Sreenivasaprasad, S., Thon, M.R, Sukno, S.A. (2014). First report of apple bitter rot caused by Colletotrichum godetiae in the UK. Plant Dis., 98(7), 1000. DOI: 10.1094/PDIS-11-13-1177-PDN

Blazek, J., Kloutvorova, J., Krelinova., J. (2006). Incidence of storage diseases on apples of selected cultivars and advanced selections grown with and without fungicide treatments. Host. Sci. (Prague), 33(3), 87–94.

Bryk, H., Kruczyńska, D. (2005) Występowanie chorób przechowalniczych na jabłkach odmian parchoodpornych [The occurrence of postharvest diseases on apples resistant to scab]. Acta Agrobot., 58(2), 205–212. DOI: 10.5586/aa.2005.047

Cameldi, I., Neri, F., Ventrucci, D., Credi G., Mari, M. (2016). Influence of harvest Date on bull’s eye rot of Crips Pink apple and control chemical strategies. Plant Dis., 100, 2287–2293. DOI: 10.1094/PDIS-05-16-0615-RE

Florian, V.C., Puia, C., Groza, R., Suciu, L.A, Florian, T. (2018). Study of the major pathogens that lead to apple fruit decay during storage. Not. Bot. Hort. Agrobot., 46(2), 538–545. DOI: 10.15835/nbha46211194

Giraud, M., Bompeix, G. (2012). Postharvest diseases of pome fruits in Europe: perspectives for integrated control. Conference paper JOBC-WPRS Bulletin, 84, 257–263.

Grantina-Ievina, L. (2015). Fungi causing storage rot of apple fruit in integrated pest management system and their sensivity to fungicides. Rural Sustain. Res., 34(329), 1–11. DOI: 10.1515/plua-2015-0007

Ivic, D., Sever, Z., Millicevic, T. (2013). Estimation of economic loss due to postharvest diseases of apple (cv. Idared) during four seasons. Pomol. Croatia, 19(1–4), 51–62. Available: https://hrcak.srce.hr/119698

Jonsson, A., Nybom, H., Rumpunen, K. (2009). Fungal disease and fruit quality in an apple orchard converted from integrated production to organic production. J. Sustain. Agric., 34, 15–37. DOI: 10.1080/10440040903396565

Juhnevica-Radenkova, K., Radenkovs, V., Seglina, D. (2016). Microbiological changes and severity of decay in apples stored for a long-term under different storage conditions. Zemdir. Agric., 103(4), 391–396. DOI: 10.13080/z-a.2016.103.050

Kingsnorth, J., Perrine, J., Berrie, A., Saville, R. (2017). First report of Neofabraea kienholzii causing bull’s eye rot of apple in the UK. New Dis. Rep., 36, 15. DOI: 10.5197/j.2044-0588.2017.036.015

Konstantinou, S., Karaoglanidis, G.S, Bardas, G.A, Minas, J.S., Doukas, E., Markoglou, A.N. (2011). Postharvest fruit rots of apple in Greece: pathogen incidence and relationship between fruit quality parameters, cultivar susceptibility, and patulin production. Plant Dis., 95, 666–672. DOI: 10.1094/PDJS-11-10-0856

Mari, M., Guidarelli, M., Martini, C., Spadoni, A. (2012). First report of Colletotrichum acutatum causing bitter rot on apple in Italy. Plant Dis., 96, 144. DOI: 10.1094/PDJS-06-11-0483

Michalecka, M., Bryk, H., Poniatowska, A., Puławska, J. (2016a). Identification of Neofabraea species causing bull’s eye rot of apple in Poland and their direct detection in apple fruit using multiplex PCR. Plant Pathol., 65, 643–654. DOI: 10.111/ppa.12449

Michalecka, M., Bryk, H., Poniatowska, A., Seliga, P., Puławska, J. (2016b). Identification and characterization of Neofabraea fungi causing bull’s eye rot on apple in Poland. Acta Hortic., 1144, 183–188. DOI: 10.17660/ActaHortic.2016.1144.26

Novotny, D., Lukas, J., Ruzickova, J., Ruzickova, P. (2019). Comparison of the occurrence of fungi causing postharvest diseases of apple grown in organic and integrated production system in orchards in the Czech Republic. Czech Mycol., 71(1), 99–121. DOI: 10.33585/cmy.71107

Pesicova, K., Kolarik, M., Hortova, B., Novotny, D. (2016). Diversity and identification of Neofabraea species causing bull’s eye rot in the Czech Republic. Eur. J. Plant. Pathol., 147, 683–693. DOI: 10.1007/s10658-016-1036-1

Poulsen, M.E., Naef, A., Gasser, S., Christen, D., Rasmussen, P.H. (2009). Influence of different diseases control pesticide strategies on multiple pesticide residue levels in apple. J. Hortic. Sci. Biotechnol., ISAFRUIT special Issue, 58–61. DOI: 10.1080/14620316.2009.11512596

Soto-Alvear, S., Lolas, M., Rosales, J.M., Chavez, E.R., Latore, B.A. (2013). Characterization on the bull’s eye rot of apple in Chile. Plant Dis., 97(4), 485–490. DOI: 10.1094/PDIS-06-12-0606-RE

Szymczak, J.A, Bryk., H., Miszczak., A. (2016). Wpływ przedzbiorczego stosowania fungicydów na ochronę jabłek przed gorzką zgnilizną (Neofabraea spp.) oraz pozostałości w owocach [Effect of pre-harvest fungicide treatments on protection against bull’s eye rot caused by Neofabraea spp. and residues in apples]. Progress Plant Prot., 56(2), 152–168. DOI: 10.14199/ppp-2016-027

Vico, J., Duduk, N., Vasic, M., Zebeljan, A., Radivojevic, D. (2016). Bull’s eye rot of apple fruit caused by Neofabraea alba. Acta Hortic., 1139, 733–738. DOI: 10.17660/ActaHortic.2016.1139.125

Weber, R.W.S., Palm, G. (2010). Resistance of storage rot fungi Neofabraea perennans, N. alba, Glomerella acutata and Neonectria galligena against thiophanate-methyl in Northern German apple production. J. Plant Dis. Prot., 117, 185–191. DOI: 10.1007/BF03356359

Weber, R.W.S. (2011). Phacidiophycnis washingtonensis, cause of a new storage rot of apples in North Europe. J. Phytopathol., 159(10), 682–696. DOI: 10.1111/j.1439-0434.2011.01826.x

Weber, R.W.S., Dralle, N. (2013). Fungi associated with blossom-end rot of apples in Germany. Europ. J. Hort. Sci., 78(3), 97–105.

Xiao, C.L., Rogers, J.D., Boal, R.J. (2004). First report of a new postharvest fruit rot on apple caused by Sphaeropsis pyriputrescens. Plant Dis., 88, 114. DOI: 10.1094/PDIS.2004.88.2.223A

Download

Published
2021-02-26



Marek Franciszek Grabowski 
Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow Wydział Biotechnologii i Ogrodnictwa, Al. 29-Listopada 54, 31-425 Krakow, Poland http://orcid.org/0000-0003-2286-2675



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.