Gustavo E. González-Terán

Department of Soil Science, Laboratory of Plant Nutrition, Colegio de Postgraduados Campus Montecillo, Texcoco 56230, State of Mexico, Mexico

Fernando C. Gómez-Merino

Department of Soil Science, Laboratory of Plant Nutrition, Colegio de Postgraduados Campus Montecillo, Texcoco 56230, State of Mexico, Mexico

Libia I. Trejo-Téllez

Department of Soil Science, Laboratory of Plant Nutrition, Colegio de Postgraduados Campus Montecillo, Texcoco 56230, State of Mexico, Mexico


Soil salinity is a growing problem that affects crop quality. Cucumber is a vegetable eaten fresh, with great worldwide demand, making its chemical and physical characteristics important. In the present work, the effects of foliar application of silicon (Si: 0 and 2 mM), calcium (Ca: 0 and 2 mM), and the combination of both (Si + Ca: 0 + 0 mM, 2 + 0 mM, 0 + 2 mM and 2 + 2 mM) on dry matter of leaves and stems, yield and fruit quality of cucumbers grown in a sodic soil were studied. Treatments did not affect dry biomass, yield and product size. The obtained results show that applying foliar Ca increases total soluble solids in comparison to the control. Foliar Si application significantly increased fruit firmness in the end towards the peduncle. Moreover, foliar Ca application increased the fruit hue angle (intense green), while foliar Si application increased chroma (dark green), both significantly regarding the control. The individual applications of Si and Ca were proven to differentially improve the fruit quality parameters of cucumber in sodic soil conditions.


°Brix, titratable acidity, fruit firmness, color attributes of fruit, sodicity, salinity, foliar application

Alcaraz-Lopez, C., Botia, M., Alcaraz, C.F., Riquelme, F. (2003). Effects of foliar sprays containing calcium, magnesium and titanium on plum (Prunus domestica L.) fruit quality. J. Plant Physiol., 160, 1441‒1446. DOI: 10.1078/0176-1617-00999

Bauer, P., Elbaum, R., Weiss, I.M. (2011). Calcium and silicon mineralization in land plants: Transport, structure and function. Plant Sci., 180, 746‒756. DOI: 10.1016/j.plantsci.2011.01.019

Boland, F.E. (1990). Fruits and fruit products. In: Official Methods of Analysis of the Association of Analytical Methods (AOAC), Helrich, K, (ed.). Virginia, USA, 910‒911.

Bonomelli, C., Ruiz, R. (2010). Effects of foliar and soil calcium application on yield and quality of table grape cv. ‘Thompson seedless’. J. Plant Nutr., 33, 299‒314. DOI: 10.1080/01904160903470364

Bouzo, C.A., Cortez, S.B. (2012). Efecto de la aplicación foliar de calcio sobre algunos atributos de calidad en frutos de melón. Rev. Investig. Agropec., 38, 257‒262.

Colla, G., Roupahel, Y., Cardarelli, M. (2006). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience, 41, 622‒627. DOI: 10.21273/HORTSCI.41.3.622

Cooke, J., Leishman, M.R. (2016). Consistent alleviation of abiotic stress with silicon addition: A meta-analysis. Funct. Ecol., 30, 1340‒1357. DOI: 10.1111/1365-2435.12713

Dabuxilatu, Ikeda, M. (2005). Interactive effect of salinity and supplemental calcium application on growth and ionic concentration of soybean and cucumber plants. Soil Sci. Plant Nutr., 61, 549‒555. DOI: 10.1111/j.1747-0765.2005.tb00063.x

Dayod, M., Tyerman, S.D., Leigh, R.A., Gilliham, M. (2010). Calcium storage in plants and the implications for calcium biofortification. Protoplasma, 247, 215–231. DOI: 10.1007/s00709-010-0182-0

Domene, R.M.A., Segura, R.M. (2014). Parámetros de calidad externa en la industria agroalimentaria. Cajamar, Negocio Agroalimentario y Cooperativo, Ficha de Transferencia, No. 003.

Esmat, F., Hassan, F.A.S. (2016). Supplemental effects of silicon nutrition on growth, quality and some physiological characters of potted chrysanthemum grown in greenhouse. Acta Sci. Pol. Hortorum Cultus, 15, 85‒98.

Fahmy, K., Nakano, K. (2013). Influence of relative humidity on development of chilling injury of cucumber fruits during low temperature storage. Asia Pacific J. Sus. Agric. Food Energy, 1, 1‒5.

FAO. (2012). El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. La gestión de los sistemas en situación de riesgo. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Roma y Ediciones Mundi-Prensa, Madrid.

Gómez-López, M.D., Fernández-Trujillo, J.P., Baille, A. (2006). Cucumber fruit quality at harvest affected by soilless system, crop age and preharvest climatic conditions during two consecutive seasons. Sci. Hortic., 110, 68–78. DOI: 10.1016/j.scienta.2006.06.021

He, L., Li, B., Lu, X., Yuan, L., Yang, Y., Yuan, Y., Du, J., Guo, S. (2015). The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia. Sci. Rep., 5, 11391. DOI: 10.1038/srep11391

Hocking, B., Tyerman, S.D., Burton, R.A., Gilliham, M. (2016). Fruit Calcium: Transport and Physiology. Front. Plant Sci., 7, 569. DOI: 10.3389/fpls.2016.00569

Hojjatnooghi. F., Mozafari, V., Tajabadipour, A., Hokmabadi, H. (2014). Effects of salinity and calcium on the growth and chemical composition of pistachio seedlings. J. Plant Nutr., 37, 928–941. DOI: 10.1080/01904167.2014.888737

Hu, D.G., Ma, Q.J., Sun, C.H., Sun, M.H., You, C.X., Hao, Y.J. (2016). Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiol. Plant., 156, 201‒214. DOI: 10.1111/ppl.12354

Hurr, B.M., Huber, D.J., Vallejos, C.E., Talcott, S.T. (2009). Developmentally dependent responses of detached cucumber (Cucumis sativus L.) fruit to exogenous ethylene. Postharvest Biol. Tec., 52, 207‒215. DOI: 10.1016/j.postharvbio.2008.12.006

Jasso-Chaverria, C., Hochmuth, G.J., Hochmuth, R.C., Sargent, S.A. (2005). Fruit yield, size, and color responses of two greenhouse cucumber types to nitrogen fertilization in perlite soilless culture. HortTechnology, 15, 422‒424. DOI: 10.21273/HORTTECH.15.3.0565

Jayawardana, H.A.R., Weerahewa, K.H.L.D., Saparamadu, M.D.J.S. (2014). Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of Capsicum. Trop. Agric. Res., 26, 74‒81. DOI: 10.4038/tar.v26i1.8073

Kaya, C., Kirnak, H., Higgs, D., Saltali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic., 93, 65‒74. DOI: 10.1016/S0304-4238(01)00313-2

Kaya, C., Higgs, D., Kirnak, H., Tas, I. (2003). Ameliorative effect of calcium nitrate on cucumber and melon plants drip irrigated with saline water. J. Plant Nutr., 26, 1665–1681. DOI: 10.1081/PLN-120022379

Khan, W.D., Aziz, T., Hussain, I., Ramzani, P.M.A., Reichenauer, T.G. (2017). Silicon: a beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress. Arch. Agron. Soil Sci., 63, 599‒611. DOI: 10.1080/03650340.2016.1233322

Khoshgoftarmanesh, A.H., Khodarahmi, S., Haghighi, M. (2014). Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Arch. Agron. Soil Sci., 60, 639–653. DOI: 10.1080/03650340.2013.822487

Lancaster, J.E., Lister, C.E. (1997). Influence of pigment composition on skin color in a wide range of fruit and vegetables. J. Am. Soc. Hortic. Sci., 122, 594‒598. DOI: 10.21273/JASHS.122.4.594

Lolaei, A., Ali, R.M., Khorrami, R.M., Kaviani, B. (2012). Effects of salinity and calcium on the growth, ion concentration and yield of olive (Olea europea L.) trees. Ann. Biol. Res., 3, 4675–4679.

Luyckx, M., Hausman, J.F., Lutts, S., Guerriero, G. (2017). Silicon and plants: current knowledge and technological perspectives. Front. Plant Sci., 8, 411. DOI: 10.3389/fpls.2017.00411

Melgar, J.C., Benlloch, M., Fernandez-Escobar, R. (2007). Calcium starvation increase salts susceptibility to water stress. J. Hortic. Sci. Biotech., 82, 622‒626. DOI: 10.1080/14620316.2007.11512282

Michailidis, M., Karagiannis, K., Tanou, G., Karamanoli, K., Lazaridou, A., Matsi, T., Molassiotis, A. (2017). Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology. Plant Physiol. Biochem., 116, 68‒79. DOI: 10.1016/j.plaphy.2017.05.005

Montesano, F.F., D´Imperio, M., Parente, A., Cardinali, A., Renna, M., Serio, F. (2016). Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods. Sci. Rep., 6, 31662. DOI: 10.1038/srep31662

Munns R., Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651‒681. DOI: 10.1146/annurev.arplant.59.032607.092911

Pavlovic, J., Zamardzic, J., Kostic, L., Laursen, K.H., Natic, M., Timotijevic, G., Schjoerring, J.K., Nikolic, M. (2016). Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions. Ann. Bot., 118, 271‒280. DOI: 10.1093/aob/mcw105

Sahebi, M., Hanafi, M.M., Akmar, A.S.N., Rafii, M.Y., Azizi, P., Tengoua, F.F., Mayzaitul, A.J.N., Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Res. Int., 2015, 1‒16. DOI: 10.1155/2015/396010

Samuels, A.L., Glass, A.D.M., Ehret, D.L., Menzies, J.G. (1993). The effects of silicon supplementation on cucumber fruit: changes in surface characteristics. Ann. Bot., 72, 433‒440. DOI: 10.1006/anbo.1993.1129

Savvas, D., Karapanos, I., Tagaris, A., Passam, H.C. (2009). Effects of NaCl and silicon on the quality and storage ability of zucchini squash fruit. J. Hortic. Sci. Biotechnol., 84, 381‒386. DOI: 10.1080/14620316.2009.11512536

Savvas, D., Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Sci. Hortic., 196, 66‒81. DOI: 10.1016/j.scienta.2015.09.010

Steiner, A.A. (1984). The universal nutrient solution. In: 6th international congress on soilless culture. Wageningen, The Netherlands, 633‒650.

Toresano-Sánchez, F., Valverde-García, A., Camacho-Ferre, F. (2012). Effect of the application of silicon hydroxide on yield and quality of cherry tomato. J. Plant Nutr., 35, 567‒590. DOI: 10.1080/01904167.2012.644375

Trajkova, F., Papadantonakis, N. (2006). Comparative effects of NaCl and CaCl2 salinity on cucumber grown in a closed hydroponic system. HortScience, 41, 437‒441. DOI: 10.21273/HORTSCI.41.2.437

Tuna, A.L., Kaya, C., Ashraf, M., Altunlu, H., Yokas, I., Yagmur, B. (2007). The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ. Exp. Bot., 59, 173‒178. DOI: 10.1016/j.envexpbot.2005.12.007

Tzortzakis, N.G. (2009). Influence of NaCl and calcium foliar spray on lettuce and endive growth using nutrient film technique. Int. J. Veg. Sci., 15, 44‒56. DOI: 10.1080/19315260802446419

Voogt, W., Sonneveld, C. (2001). Silicon in horticultural crops grown in soilless culture. In: Silicon in agriculture, Datnoff, L.E., Snyder, G.H., Korndörfer, G.H. (eds.). Elsevier, Amsterdam, The Netherlands, 115‒131. DOI: 10.1016/S0928-3420(01)80010-0

Xu, C.X., Ma, Y.P., Liu, Y.L. (2015). Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. S. Afr. J. Bot., 98, 26‒36. DOI: 10.1016/j.sajb.2015.01.008

Yaghubi, K., Ghaderi, N., Vafaee, Y., Javadi, T. (2016). Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Sci. Hortic., 213, 87‒95. DOI: 10.1016/j.scienta.2016.10.012

Zhu, Y., Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev., 34, 455‒472. DOI: 10.1007/s13593-013-0194-1

Zhu, Z., Wei, G., Li, G., Quian, Q., Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci., 162, 527‒533. DOI: 10.1016/j.plantsci.2004.04.020

Zuccarini, P. (2010). Biological and technological strategies against soil and water salinization. II – plant. J. Plant Nutr., 33, 1489‒1505. DOI: 10.1080/01904167.2010.489986



Gustavo E. González-Terán 
Department of Soil Science, Laboratory of Plant Nutrition, Colegio de Postgraduados Campus Montecillo, Texcoco 56230, State of Mexico, Mexico
Fernando C. Gómez-Merino 
Department of Soil Science, Laboratory of Plant Nutrition, Colegio de Postgraduados Campus Montecillo, Texcoco 56230, State of Mexico, Mexico
Libia I. Trejo-Téllez 
Department of Soil Science, Laboratory of Plant Nutrition, Colegio de Postgraduados Campus Montecillo, Texcoco 56230, State of Mexico, Mexico



Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.