THE DISTRIBUTION OF BIOACTIVE COMPOUNDS IN THE TUBERS OF ORGANICALLY GROWN JERUSALEM ARTICHOKE (Helianthus tuberosus L.) DURING THE GROWING PERIOD

Honorata Danilcenko

Institute of Agriculture and Food Sciences, Faculty of Agronomy, Aleksandras Stulginskis University, Studentų g. 11, Kaunas – Akademija, LT-53361, Lithuania

Elvyra Jariene

Institute of Agriculture and Food Sciences, Faculty of Agronomy, Aleksandras Stulginskis University, Studentų g. 11, Kaunas – Akademija, LT-53361, Lithuania

Alvyra Slepetiene

Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344, Kėdainių r., Lithuania

Barbara Sawicka

Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland

Sandra Zaldariene

Institute of Agriculture and Food Sciences, Faculty of Agronomy, Aleksandras Stulginskis University, Studentų g. 11, Kaunas – Akademija, LT-53361, Lithuania



Abstract

This study aim to evaluate the distribution of bioactive compounds in the tubers of organically grown Jerusalem artichoke (JA) during the growing season in 2012–2014. Field experiments on the three JA cultivars: Albik, Rubik and Sauliai, were carried out at the organic farm in South Lithuania. The tubers were uprooted at the end of each month of the growing period (8 times) in March–June (spring period) and August–November (autumn period) and were analysed for the contents of dry matter, carbohydrates, phenolic compounds,
leuco-anthocyanins, catechins. The significantly highest dry matter content in JA tubers was determined in March of 2014 after they had been exposed to sub-zero temperatures in the soil during the winter, while the amount of phenolic compounds – at the beginning of the spring growing period. The significantly highest content of inulin in October of 2014 was accumulated in the tubers of cv. Sauliai (46.08%), carbohydrates – in Albik tubers in September of 2014 (44.23%), when the formation of new tubers began. Significantly higher amounts of catechins were determined in the second half of the growing period. Cultivar and organogenesis stage had a significant impact on the content of leuco-anthocyanins in JA tubers. Substantial differences in the content of leuco-anthocyanins among the tested cultivars were determined at the end of the growing season.

Keywords:

tubers, anthocyanins, inulin, catechins, phenolic compounds, carbohydrates

Andersen, Ø.M., Markham, K.R (2006). Flavonoids: chemistry, biochemistry and applications. CRC Press Taylor & Francis Group, Boca Raton, 429–426.
Baker, L., Thomassin, P.J., Henning, J.C. (1990). The economic competitiveness of Jerusalem artichoke (Helianthus tuberosus L.) as an agricultural feedstock and ethanol production for transportation fuels. Can. J. Agric. Econ., 38, 981–990.
Barta, J., Patkai, G. (2007). Chemical composition and storability of Jerusalem artichoke tubers. Acta Aliment. Hung., 36(2), 257–267.
Brkljača, J., Bodroža-Solarov, M., Krulj, J., Terzić, S., Mikić, A., Jeromela, A.M. (2014). Quantification of inulin content in selected accessions of Jerusalem artichoke (Helianthus tuberosus L.). Helia, 37(60), 105–112.
Chen, F., Long, X., Yu, M., Liu, Z., Liu, L. (2013). Phenolics and antifungal activities analysis in industrial crop Jerusalem artichoke (Helianthus tuberosus L.) leaves. Ind. Crop Prod., 47, 339–345.
Chupahina, G.N., Maslennikov, M. (2004). Methods ofanalysis of vitamins. Workshop, Kaliningrad, 45–48.
Cieslik, E. (1998). Amino acid content of Jerusalem artichoke (Helianthus tuberosus L.) tubers before and after storage in soil. Proc. Seven Semin. Inulin, Belgium, 86–87.
Danilčenko, H., Jariene, E., Aleknaviciene, P. (2008). Quality of Jerusalem Artichoke (Helianthus tuberosus L.) Tubers in Relation to Storage Conditions. Not. Bot. Hort. Agrobot. Cluj-Napoca, 36(2), 23–27.
Danilčenko, H., Jariene, E., Taraseviciene, Z., Aleknaviciene, P., Kulaitiene, J., Kita, A., Gajewski, M., Bliznikas, S., Luksiene, Z. (2009). Quality and safety aspects of some new generation food products in Lithuania. In: Food Quality and Safety, Krasnowska, G., Pękasa, A. (eds.). Wyd. UP we Wrocławiu, Wrocław, 55–64.
Dixon, R.A., Paiva, N.L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell. 7(7), 1085–1097.
Duthie, G.G., Duthie, S.J., Kyle, J.A.M. (2000). Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr. Res. Rev., 13, 79–106
Gupta, Ch., Verma, R. (2011). Visual estimation and spectrophotometric determination of tannin content and antioxidant activity of three common vegetable. Int. J. Pharm. Sci. Res. 2(1), 175–182.
Hafez, M.R. (2013). Effect of some biological components on Jerusalem artichoke (Helianthus tuberosus L.) productivity under north Sinai conditions. J. App. Sci. Res., 9(1), 804–810.
Kays, S.J., Kultur, F. (2005). Genetic variation in Jerusalem artichoke (Helianthus tuberosus L.) flowering date and duration. HortScience, 40(6), 1675–1678.
Kaluzewicz, A., Krzesinski, W., Knaflewski M. (2009). Effect of temperature on yield and quality of broccoli heads. Veget. Crop Res. Bull., 71, 51–56.
Kapusta, I., Krok, E., Jamro, D., Cebulak, T., Kaszuba, J., Salach, R. (2013). Identification and quantification of phenolic compounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers. J. Food Agric. Environ., 11, 601–606.
Krishnappa, K.S. (1989). Effect of fertilizer application on dry matter and N, P and K accumulation in potato at different stages of growth. J. Agr. Sci., 23(3), 349–354.
Krivencov, V.I. (1982). Guidelines for the analysis of the fruit on the biochemical composition. Yalta, 22.
Krivorotova, T., Sereikaite, J. (2013). Seasonal changes of carbohydrates composition in the tubers of Jerusalem artichoke. Acta Physiol. Plant., 36(1), 79–83. DOI:10.1007/s11738-013-1388-5.
Lattanzio, V., Kroon, P.A., Linsalata, V., Cardinali, A. (2009). Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Food, 1, 131–144.
Lindsay, H. (1973). A colorometric estimation of reducing sugar in potatoes with 3-5, dinitrosalicylic acid. Potatoes Res., 16(3), 176–179.
LST EN 12145:2001. Fruit and vegetable juices – Determination of total dry matter – Gravimetric method with loss of mass on drying.
McLaurin, W.J., Somda, Z.C., Kays, S.J. (1999). Jerusalem artichoke growth, development, and field storage. I. Numerical assessment of plant part development and dry matter acquisition and allocation. J. Plant Nutr., 22(8), 1303–1313.
Meijer, W.J.M., Mathijssen, E.W.J.M. (1991). The relations between flower initiation and sink strength of stems and tubers of Jerusalem artichoke (Helianthus tuberosus L.). Neth. J. Agric. Sci., 39, 123–135.
Naumann, C., Bassler, R. (1976). Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten. Methodenbuch Band III. Die chemische Untersuchung von Futtermitteln. Mit Ergänzungslieferungen 1983, 1988, 1993, 1997. VDLUFA–Verlag, Darmstadt.
Pan, L., Sinden, M.R., Kennedy, A.H., Chai, H., Watson, L.E., Graham, T.L., Kinghorn, A.D. (2009). Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochem. Lett., 2, 15–18.
Rodrigues, M.A., Sousa, L., Cabanas, J.E., Arrobas, M. (2007). Tuber yield and leaf mineral composition of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Span. J. Agric. Res., 5(4), 545–553.
Saengthobpinit, W., Sajjaanantakul, T. (2005). Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol. Technol., 37(1), 93–100.
Sawicka, B., Kalembasa, D. (2013). Annual variability of some toxic element contents (Cd, Cr, Co, Ni and Pb) and response of two Jerusalem artichoke varieties to increasing nitrogen fertilizer at constant PK levels. Pol. J. Environ. Stud., 22(3), 861–871.
Steyn, W.J., Wan, S.J.E., Holcroft, D.M., Jacobs, G. (2002). Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytol., 155, 349–361.
Taper, H.S., Roberfroid, M.B. (2002). Inulin/oligofructose and anticancer therapy. Br. J. Nutr., 87(2), 283–286.
Tchoné, M., Bärwald, G., Annemüller, G., Fleischer, L. (2006). Separation and identification of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.). Sci. Aliment., 26, 394–408.
Terzić, S., Atlagić, J., Maksimo, I., Zeremski, T., Petrović, S., Dedić, B. (2012). Influence of photoperiod on vegetation phases and tuber development in topinambour (Helianthus tuberosus L.). Arch. Biol. Sci., Belgrade, 64(1), 175–182.
Tungland, B.C. (2003), Fructooligosaccharides and other fructans: structures and occurrence, production, regulatory aspects, food applications, and nutritional health significance. ACS Symp. Ser., 849, 135–152.
Yuan, X.Y., Gao, M.Z., Xiao, H.B., Tan, C.Y., Du, Y.G. (2012). Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem., 13, 10–14.
Zhong, Qi., Liu, S., Wang, L., Wang, Y., Li, L. (2009). Absorption, accumulation and allocation of nitrogen, phosphorus, and potassium of Jerusalem artichoke. Plant Nutr. Fert. Sci., 15(4), 948–952.
Zubr, J. (1988). Jerusalem artichoke as a field crop in Northern Europe. In: Topinambour (Jerusalem Artichoke). Report EUR 11855, Grassi, G., Gosse, G.,
(eds.). CEC, Luxembourg, 105–117.
Download

Published
2017-06-30



Honorata Danilcenko 
Institute of Agriculture and Food Sciences, Faculty of Agronomy, Aleksandras Stulginskis University, Studentų g. 11, Kaunas – Akademija, LT-53361, Lithuania
Elvyra Jariene 
Institute of Agriculture and Food Sciences, Faculty of Agronomy, Aleksandras Stulginskis University, Studentų g. 11, Kaunas – Akademija, LT-53361, Lithuania
Alvyra Slepetiene 
Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344, Kėdainių r., Lithuania
Barbara Sawicka 
Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
Sandra Zaldariene 
Institute of Agriculture and Food Sciences, Faculty of Agronomy, Aleksandras Stulginskis University, Studentų g. 11, Kaunas – Akademija, LT-53361, Lithuania



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)