FIELD PERFORMANCE OF MICROPROPAGATED Rubus SPECIES

Aleksandar Leposavić

Fruit Research Institute, Čačak, Republic of Serbia

Djurdjina Ružić

Fruit Research Institute, Čačak, Republic of Serbia

Žaklina Karaklajić-Stajić

Fruit Research Institute, Čačak, Republic of Serbia

Radosav Cerović

Innovation Center, Faculty of Technology and Metallurgy, Belgrade, Republic of Serbia

Tatjana Vujović

Fruit Research Institute, Čačak, Republic of Serbia

Edward Żurawicz

Research Institute of Horticulture, Skierniewice, Poland

Olga Mitrović

Fruit Research Institute, Čačak, Republic of Serbia



Abstract

The objective of this study was to test yield and fruit quality of the red raspberry ‘Meeker’ and the blackberry ‘Čačanska Bestrna’ propagated using the standard method (ST) and in vitro, by tissue culture (TC). The monitored parameters included the total number of canes, cane number per one metre of the planted row, yield per cane (raspberry) or per bush (blackberry) and total yield. Monitoring fruit quality parameters included the weight and dimensions of fruit, the number, weight and dimensions of individual drupelets and weight of drupelet seeds. No significant differences were determined either for the total number of canes and/or the cane number per row metre in plants originating from both types of planting material in both genotypes. Significant differences were observed to the advantage of the raspberry ST plants, in the total yield, as well as the fruit weight in the blackberry ST plants. A significantly higher weight of drupelet seeds was observed in TC plants of both genotypes. Concerning the organoleptic assessment of fruits, no significant differences were recorded between fruits coming from ST and TC plants.

Keywords:

raspberry, blackberry, planting material, yield, fruit quality

Bite, A., Petrevica, L. (2002). The influence of in vitro propagation on the field behavior of red raspberry variety ‘Norna’. Acta Hortic., 585, 615–619.
Cerović, R., Ružić, Đ. (1989). Micropropagation of strawberry cvs Čačanska rana and Senga Sengana. Pomological-biochemical characteristics of micropropagated plants. Acta Hortic., 265, 353–358.
Cerović, R., Leposavić, A. (2011). Current state and perspectives of small fruit production in the Republic of Serbia. J. Mt. Agric. Balk., 14, 1156–1170.
EPPO (2009). Certification scheme for Rubus. PM 4/10(2) EPPO Bulletin, 39, 271–277. doi: 10.1111/j.1365-2338.2009.02308.
Gantait, S., Mandal, N., Prakash, K.D. (2010). Field performance and molecular evaluation of micropropagated strawberry. Recent Res. Sci. Technol., 2(5), 12–16.
Georgieva, M., Kondakova, V., Dragoyski, K., Georgiev, D., Naydenova, G. (2009). Comparative study of raspberry cv. Balgarski Rubin propagated by classical and in vitro methods. J. Pomology, 43, 81–86.
Isac, V., Popescu, A. (2009). Protocol for in vitro micropropagation of raspberry and plant regeneration by organogenesis. In: A guide to some in vitro techniques – Small fruits, Mezzetti, B., Ružić, Đ., Gajdosova, A. (eds.), COST Action 863, Brussels (Belgium), 14–23.
Leposavić, A., Blagojević, M., Rakićević, M. (2003). Propagation of blackberry cv Čačanska Bestrna by softwood cuttings. Cont. Agri., 52, 85–87.
Leposavić, A., Đurović, D., Keserović, Z., Popović, B., Mitrović, O., Miletić, N., Magazin, N. (2013). Evaluation of raspberry cultivars grown in the western Serbia region. Hortic. Sci. (Prague), 40, 1–7 .
Leposavić, A., Đurović, D., Keserović, Z., Jevremović, D. (2015). Vegetative and yield potential of cultivars and selection of raspberry cultivated in conditions of Western Serbia. Bulg. J. Agric. Sci., 21, 153‒159.
Lewandowski, M., Żurawicz, E., Pruski, K. (2015). The effects of the growing season extension on Polish primocane-fruiting raspberry cultivars. Hortic. Sci. (Prague), 42, 203–208.
Official Gazette RS No. 54/93, 35/94, 43/94; Official Gazette RS No. 135/04; 18/05 and 101/2005: Law on seed and planting material.
Popov, S. (1993). Behaviour of the micropropagated Stanley plum cultivar in the plantation. Biotechnol. Biotec. Eq., 7, 21–23.
Ružić, Đ., Cerović, R., Nikolić, M. (1991). Field performance of micropropagated sour cherry cv. Šumadinka. J. Pomology, 25, 19–26. (In Serbian).
Ružić, Đ., Cerović, R. (1998). A rapid method of blackberry propagation. Acta Agric. Serb., 6, 55–61.
Ružić, Đ., Cerović, R. (2001). Field performance of micropropagated plum cv. Požegača. Acta Agric. Serb., 11, 3–9.
Ružić, Đ., Lazić, T. (2006). Micropropagation as means of rapid multiplication of newly developed blackberry and black currant cultivars. Agric. Conspec. Sci., 71(4), 149–153.
Ružić, Đ., Vujović, T., Cerović, R. (2009). Protocol for in vitro micropropagation of blackberry, and plant regeneration by organogenesis. In: A guide to some in vitro techniques – Small fruits, Mezzetti, B., Ružić, Đ., Gajdosova, A. (eds.). COST Action 863, Brussels (Belgium), 24–29.
Ružić, Đ., Leposavić, A., Cerović, R., Karaklajić-Stajić, Ž., Vujović, T., Miletić, N., Žurawicz, E. (2013). Physiological properties of raspberry and blackberry propagated by in vitro micropropagation and standard techniques. J. Pomology, 47, 55–61. (In Serbian). Strik, B.C., Clark, J.R., Finn, C.E., Bañados, P. (2007). Worldwide production of blackberries, 1995 to 2005 and predictions for growth. HortTechnol., 17, 205–213.
Tsao, W.V., Reed, B.M. (2002). Gelling agents, silver nitrate, and sequestrene iron influence adventitious shoot and callus formation from Rubus leaves. In Vitro Cell. Dev. Biol. Pl., 38, 29–32.
Velchev, V., Toshkov, A. (2005). Reproductive performances of micropropagated raspberry plants. J. Pomology, 39, 25–32.
Zawadzka, M., Orlikowska, T. (2006). The influence of FeEDDHA in red raspberry cultures during shoot multiplication and adventitious regeneration from leaf explants. Plant Cell Tiss. Org. Cult., 85, 145–149.
Zawadzka, M., Orlikowska, T. (2009). Influence of FeEDDHA on in vitro rooting and acclimatisation of red raspberry (Rubus ideaus L.) in peat and vermiculite. J. Hort. Sci. Biotechnol., 84, 599–603.
Żebrowska, J., Kaczmarska, E., Gawroński, J. (2015). Comparative studies on the agronomic value of in vitro and conventionally propagated strawberry (Fragaria × ananassa Duch.) plants. Acta Sci. Pol. Hortorum Cultus, 14(3), 25–35.
Download

Published
2016-10-31



Aleksandar Leposavić 
Fruit Research Institute, Čačak, Republic of Serbia
Djurdjina Ružić 
Fruit Research Institute, Čačak, Republic of Serbia
Žaklina Karaklajić-Stajić 
Fruit Research Institute, Čačak, Republic of Serbia
Radosav Cerović 
Innovation Center, Faculty of Technology and Metallurgy, Belgrade, Republic of Serbia
Tatjana Vujović 
Fruit Research Institute, Čačak, Republic of Serbia
Edward Żurawicz 
Research Institute of Horticulture, Skierniewice, Poland
Olga Mitrović 
Fruit Research Institute, Čačak, Republic of Serbia



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)