MYCORRHIZAL INOCULATION OF APPLE IN REPLANT SOILS – ENHANCED TREE GROWTH AND MINERAL NUTRIENT STATUS

Maciej Gąstoł

Agricultural University in Kraków

Iwona Domagała-Świątkiewicz

Agricultural University in Kraków



Abstract

The field experiment (2009–2012) was conducted to assess the influence of different biofertilizers (AMF liquid/granular inocula, humic and seaweed extracts) on the growth and yielding of ‘Topaz’/M.26 apple planted on SARD soils in Poland. During conversion to organic orchard trees’ growth, fruit yield, their quality indices as well as nutritional status of leaf and fruit was ascertained. Fruit polyphenol content and their free radical scavenging activity were assessed. Moreover, the mycorrhizal root parameters (mycorrhizal and arbuscules frequency) were also presented. The most vigorous trees were inoculated with liquid inocula MicoPlant M and MicoPlant S. The plants treated with MicoPlant S gave the highest total yield (12.12 kg/tree) and revealed the best productivity (> 1 kg cm-2) as well as the average fruit weight. The liquid suspended inocula were more effective than granular one in terms of mycorrhizal root colonisation. Investigated biofertilizers increased P, K and Cu content of leaf. Organic soil extract (Humi-Plant) decreased P and K content of fruit, while seaweed extracts (AlgaminoPlant) increased Ca amount of fruit. These treatments had the lowest K:Ca ratio. Used biofertilizers influenced apples polyphenol content as well as their antioxidant status.

Keywords:

mycorrhiza, replant disease, macro- and microelements, antioxidants

Auge, R.M. (2000). Stomatal behavior of arbuscular mycorrhizal plants. In: Arbuscular mycorrhizas: physiology and function, Y., Kapulnik, D.D., Douds. (eds). Kluwer Acad. Publ.,
Dordrecht, the Netherlands, 201–237.
Basak, A. (2006). The effect of a combined treatment with retardant and auxin on mineral composition of fruits seeds and leaves of apple trees. Food Agricult. Environ., 4(2), 150–154.
Benzie, F.F., Strain, J.J. (1996). Ferric reducing/Antioxidant Power Assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurements
of total antioxidant power and ascorbic acid concentration. Meth. Enzymol., 299, 15–23.
Bennewitz, E. von, Hlušek, J. (2006). Effect of the application of two biopreparations on the nutritional status, vegetative and generative behaviour of ‘Jonagold’ apple trees. Acta Hort.,
721, 129–135.
Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebens. Wiss. Technol., 28, 25–30.
Chen, Y., Clapp, C.E., Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutri., 50(7), 1089–1095.
Clark, R.B., Zeto, S.K. (2008). Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr., 23, 867–902.
Daniell T.J., Husband R., Fitter A.H., Young J.P.W. (2001). Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol. Ecol. 36, 203-209.
Douds, D.D., Millner, P.D. (1999). Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agricult. Ecosyst. Environ., 74, 77–93.
Franke-Snyder, M., Douds, D.D., Galvez, L., Phillips, J.G., Wagoner, P., Drinkwater, L., Morton, J.B. (2001). Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl. Soil. Ecol., 16, 35–48.
Galvez, L., Douds, D.D., Drinkwater, L.E., Wagoner, P. (2001). Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant
Soil, 228, 299–308.
Garg, N., Aggarwal, N. (2012). Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Reg., 66, 9–26.
Gąstoł, M., Domagała-Świątkiewicz, I. (2010). Effect of arbuscular mycorrhizas and phosphorus fertilization on mineral nutrient status of apple. Acta Biochim. Pol., 57, suppl. 3, 14.
Giovannetti, M., Gianinazzi-Pearson, V. (1994). Biodiversity in arbuscular mycorrhizal fungi. Mycol. Res., 98, 705–715.
González-Chávez, M.C., Carillo-González, R., Wright, S.F., Nichols, K.A. (2004). Glomalin: a mechanism for heavy-metal sequestration by arbuscular mycorrhizal fungi. Environ. Pollut.,
130, 317–323.
Gosling, P., Hodge, A., Goodlass, G., Bending, G.D. (2006). Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosys. Environ., 113, 17–35.
Harrier, L.A., Watson, C.A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soilborne pathogens in organic and/or other sustainable
farming systems. Pest Manag. Sci., 149–157. [DOI: 10.1002/ps.820].
Hartz, T.K., Bottoms, T.G. (2010). Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. HortSci., 45, 906–910.
van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., Sanders, I.R. (1998). Mycorrhizal fungal diversity determines plant
biodiversity, ecosystem variability and productivity. Nature, 396, 72–75.
Hildebrandt, U., Regvar, M., Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146.
Helgason, T., Daniell, T.J., Husband, R., Fitter, A.H., Young, J.P.W. (1998). Ploughing up the wood-wide web? Nature, 394, 431.
Khan, A.G., Kuek, C., Chaudhry, T.M., Khoo, C.S., Hays, W.J. (2000). Role of plants. Mycorrhizae and phytochelators in heavy metal contamined land remediation. Chemisphere, 41,
197–297.
Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M.N., Rayorath, P., Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul.,
28, 386–399.
Kohler, J., Caravaca, F., Roldán, A. (2009). Effect of drought on the stability of rhizosphere soil aggregates of Lactuca sativa grown in a degraded soil inoculated with PGPR and AM fungi.
Appl. Soil Ecol., 42, 160–165.
Kohler, J., Hernández, J.A., Caravaca, F., Roldán, A. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in waterstressed plants. Funct. Plant Biol., 35, 141–151.
Koske, R.E., Gemma, J.N. (1989). A modified procedure for staining roots to detect V-A mycorrhizas. Mycol. Res., 92, 486–488.
Kruczyńska, D. (2002). Nowe odmiany jabłoni. Hortpress, Warszawa.
Kulikova, N.A., Stepanova, E.V., Koroleva, O.V. (2005). Mitigating activity of humic substances: direct influence on biota. In: Use of humic substances to remediate polluted environments:
from theory to practice, I.V., Perminova et al. (ed.). Springer Netherlands. 52, 285–309.
Laurent, A.S., Merwin, I.A., Thies, J.E. (2008). Long-term orchard groundcover management systems affect soil microbial communities and apple replant disease severity. Plant Soil, 304,
209–225.
Li, Y., Chen, Y.L., Li, M., Lin, X.G., Liu, R.J. (2012). Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere, 22(1), 79–87.
Magarey, R.C., Bull, J.J., Reghenzani, J.R. (1999). The influene of vesicular arbuscular mycorrhizae (VAM) on sugarcane growth in the field. Proc. Aust. Sugar Cane Technol., 27, 282–290.
Magdoff, F., Weil, R.R. (2004). Soil organic matter in sustainable agriculture. CRC Press, Upper Saddle River.
Manici, L.M., Ciavatta, C., Kelderer, M., Erschbaumer, G. (2003). Replant problems in South Tyrol: role of fungal pathogens and microbial population in conventional and organic apple
orchards. Plant Soil, 256, 315–324.
Mazzola, M. (1999). Transformation of soil microbial community structure and Rhizoctonia suppressive potential in response to apple roots. Phytopatology, 89, 920–927.
Mazzola, M., Gu, Y.H. (2000). Impact of wheat cultivation on microbial communities from replant soil and apple growth in greenhouse trials. Phytopathology, 90, 114–119.
Mazzola, M., Manici, L.M. (2012). Apple replant disease: Role of microbial ecology in cause and control. Ann. Rev. Phytopathol., 50, 45–65.
Mäder, P., Edenhofer, S., Boller, T., Wiemken, A., Niggli, U. (2000). Arbuscular mycorrhizae in a longterm field trial comparing low-input (organic, biological) and high-input (conventional)
farming systems in a crop rotation. Biol. Fert. Soils, 31, 150–156.
Miransari, M. (2010). Contribution of arbuscular mycorrhize symbiosis to plant growth under different types of soil stress. Plant Biol., 12, 563–569.
Nardia, N., Pizzeghelloa, D., Muscolob, A., Vianelloc, A. (2002). Physiological effects of humic substances on higher plants. Soil Biol. Biochem., 34, 1527–1536.
Oehl, F., Sieverding, E., Ineichen, K., Ris, E.A., Boller, T., Wiemken, A. (2005). Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively
managed agroecosystems. New Phytol., 165, 273–283.
Oehl F., Sieverding E., Ineichen K., Mader P., Boller T., Wiemken A. (2003). Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central
Europe. Appl. Environ. Microbiol. 69, 2816–2824.
Otto, G. (1989). Effects of vesicular-arbuscular mycorrhizas and phosphorus on water status and growth of apple. In: Interrelationships between microorganisms and plants in soil. V., Vančura, F., Kunc (eds.) Proceedings of an International Symposium, Liblice, Czechoslovakia, Jun. 22–27, 1987, 137–140.
Pacholak, E., Zydlik, Z., Rutkowski, K. (2009). Effect of 30-year cultivation of apple trees on chemical and biochemical conditions of soil designed for replantation. Zesz. Probl. Post. Nauk
Roln., 536, 161–168.
Pacholczak, A., Szydło, W., Petelewicz, P., Szulczyk, K. (2013). The effect of Algaminoplant on rhizogenesis in stem cuttings of Physocarpus opulifolius ‘Dart’s Gold’ and ‘Red Baron’ Acta
Sci. Pol. Hortorum Cultus, 12(3), 105–116.
Pasławski, P., Migaszewski, M. (2006). The quality of element determinations in plant materials by instrumental methods. Polish J. Environ. Stud., 15(2a), 154–164.
Peterson, R.L., Massicotte, H.B., Melville, L.H. (2004). Mycorrhizas: anatomy and cell biology. NRC Res. Press. Ottawa, Canada. 173 pp.
Ryan, M.H., Angus, J.F. (2003). Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P uptake or yield. Plant Soil, 250, 225–239.
Ryan, M.H., Graham, J.H. (2002). Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil, 244, 263–271.
Sedláček, M., Pavloušek, P., Lošák, T., Zatloukalová, A., Filipčík, R. Hlušek, J., Vítězová, M. (2013). The effect of arbuscular mycorrhizal fungi on the content of macro and micro elements in grapevine (Vitis vinifera L.) leaves. Acta Univ. Agricult. Silvicult. Mendel. Brun., 61(1), 187–191.
van Schoor, L., Stassen, P.J.C. (2008). Effect of biological soil amendments on tree growth and microbial activity in pome fruit orchards. Acta Hort., 767, 309–318.
Sharma, S.D., Sharma, N.C., Sharma, C.L., Kumar, P, Chandel, A. (2012a). Glomus-Azotobacter symbiosis in apple under reduced inorganic nutrient fertilization for sustainable and economic
orcharding enterprise. Sci. Horticult., 146, 175–181.
Sharma, S.H.S., Lyons, G., McRoberts, C., McCall, D., Carmichael, E., Andrews, F., Swan R., McCormack, R., Mellon, R. (2012b). Biostimulant activity of brown seaweed species from
Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J. Appl. Phycol.,
24(5), 1081–1091.
Singh, S.R., Zargar, M.Y., Najar, G.R., Peer, F.A. Ishaq, M. (2013). Microbial dynamics, root colonization, and nutrient availability as influenced by inoculation of liquid bioinoculants in
cultivars of apple seedlings. Comm. Soil Sci. Plant Anal., 44(10), 1511–1523.
Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol.,
1999, 299, 152–178.
Spinelli, F., Fiori, G., Noferini, M., Sprocatti, M., Costa, G. (2009). Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hort.
Sci. Biotechnol., Spec. Iss. 131–13.
Tommerup, I.C. (1992). The role of mycorrhiza in plant population and communities. Mycorrhiza, 1, 123–125.
Traquair, J.A. (1984). Etiology and control of orchard replant problems: a review. Can. J. Plant Path., 6, 54–62.
Trevisan, S., Francioso, O., Quaggiotti, S., Nardi, S. (2010). Humic substances biological activity at the plant-soil interface. From environmental aspects to molecular factors. Plant Signal. Beh.,
5(6), 635–643.
Trouvelot, A., Kought, J.L. (1986). Soderstrom B. Mesure du taux VA d’un systeme radiculaire. Recherche de metthodes d’estimation ayant une signification fonctionelle. In: Physiological
and genetical aspects of mycorrhizae INRA, V., Gianinazzi-Pearson, S., Gianinazzi (eds). Paris, 217–221.
Ulrichs, C., Fischer, G., Büttner, C., Mewis, I. (2008). Comparison of lycopene, b-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agronom. Colomb., 26(1), 40–46.
Uthede, R.S., Koch, C.A., Menzies, J.G. (1999). Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. Can. J. Plant. Pathol., 21, 265–271.
Wu, Y., Jenkins, T., Blunden, G., von Mende, N., Hankins, S.D. (1998). Suppression of fecundity of the root-knot nematode, Meloidogyne javanica, in monoxenic cultures of Arabidopsis thaliana treated with an alkaline extract of Ascophyllum nodosum. J. Appl. Phycol., 101, 91–94.
Wu, Q.S., Srivastava, A.K., Zou, Y-N. (2013). AMF-induced tolerance to drought stress in citrus: A review. Sci. Hort., 164, 77–87.
Zhang, X., Ervin, E.H. (2004). Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci., 48, 1737–1745.
Zydlik, Z., Rutkowski, K., Pacholak, E. (2006). Effect of soil fatigue prevention methods on microbiological soil status in replanted apple tree orchard. Part III. Number of fungi and Actinomycetes. EJPAU, 9(4).
Download

Published
2015-08-31



Maciej Gąstoł 
Agricultural University in Kraków
Iwona Domagała-Świątkiewicz 
Agricultural University in Kraków



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)