POSSIBILITY OF REUSING EXPANDED CLAY IN GREENHOUSE TOMATO CULTIVATION. PART I. YIELD AND CHEMICAL COMPOSITION OF FRUITS

Zbigniew Jarosz

University of Life Sciences in Lublin

Katarzyna Dzida

University of Life Sciences in Lublin

Renata Nurzyńska-Wierdak

University of Life Sciences in Lublin



Abstract

One of the possibility that allow costs of soilless tomato culture to be reduced is to reuse the same growing medium. Expanded clay is classified as an inert medium, that is, chemically and biologically passive, although some studies indicate the possibility of the occurrence of exchange sorption and ion adsorption in this medium during cultivation. The aim of the study, conducted in the period 2007–2008, was to determine the usefulness of expanded clay being post-production waste in soilless tomato culture under extended cycle conditions. The study used new expanded clay (I) as the control and expanded clay being post-production waste from year-round tomato cultivation with the following experimental design: chemically sterilized material (II); material washed in water with the remains of the old root system of plants removed and additionally chemically sterilized (III); and material without any modifying treatments (IV). Expanded clay was placed in
12 dm3 poly sleeves and formed in the shape of growing slabs. Crops were grown using a drip irrigation and fertilization system with closed nutrient solution circulation, without recirculation. The nutrient solution was supplied to all plants in the same amount and with the same composition. The study found the lowest total fruit yield (15.10 kg·plant-1) and marketable fruit yield (14.07 kg·plant-1) of tomato grown in reused expanded clay without any modifying treatments (IV), whereas this yield was significantly higher from tomato plants grown in the material washed and additionally chemically sterilized (III). Fruits with the highest unit weight (150.8 g) were picked from plants grown in new expanded clay (I), while fruits with a significantly lower weight (138.6 g) were obtained from the treatments
with the reused medium both washed and chemically sterilized (III). Fruits of tomato plants growing in reused expanded clay subjected to washing and chemical sterilization (III) contained the highest amount of dry matter (5.71%) and total sugars (3.08% fr.w.), whereas fruits of tomato grown in the new medium (I) had the highest amount of vitamin C (21.96 mg·100 g-1 FW), zinc (25.86 mg·kg-1 d.w) and copper (6.10 mg·kg-1 d.w).

Keywords:

soilless culture, reused medium, vitamin C, total sugars, fruit nutrient content

Adamicki F., Dyśko J., Nawrocka B., Ślusarski C., Wysocka-Owczarek M., 2005. Metodyka integrowanej produkcji pomidorów pod osłonami. Instrukcja PIORIN, Warszawa.
BonasiaA., Gonella M., Santamaria P., Elia A., 2001. Substrate re-use affect yield and quality of seven radish cultivars grown in a closed soilless system. Acta Hort. 548, 367–376.
Borosić J., Benko B., Nowak N., Toto N., Zutić I., Fabek S., 2009. Growth and field of tomato grown on reused rockwool slabs. Acta Hort., 819, 221–226.
Chohura P., Komosa A., 1999. Wpływ podłoży inertnych na plonowanie pomidora szklarniowego. Zesz. Probl. Postęp. Nauk Rol., 466: 471–477.
Cucarella V., Renman G., 2009. Phosphrus sorpction capacity of filter material used for one-site wastewater treatment determined in batch experiments – a comparative study. J. Environ. Qual., 38, 381–392.
Drizo A., Frost C.A., Grace J., Smith K.A., 1999. Physico-chemical screening of phosphate removing substrates for use in constructed wetland systems. Water Res., 33(17), 3595–3602.
Ho L., C., Hand D., J., Fussell M., 1999. Improvement of tomato fruit quality by calcium nutrition. Acta Hort., 481., 463–468.
Jarosz Z., Dzida K., 2011. Effect of substratum and nutrient solution upon yielding and chemical composition of leaves and fruits of glasshouse tomato grown in prolonged cycle. Acta Sci. Pol., Hortorum Cultus, 10(3), 247–258.
Jarosz Z., Horodko K., 2004. Plonowanie i skład chemiczny pomidora szklarniowego uprawianego w podłożach inertnych. Rocz. AR Pozn., CCCLIV, Ogrodn. 37, 81–86.
Johansson Westholm L., 2006. Substrates for phosphorus removal – potential benefits for one-site wastewater treatment. Water Res., 40(1), 23–36.
Kleiber T., Komosa A., 2008. Comparsion dynamic of N, P, K, contents in different anthurium cultivars (Anthurium cultorum Birdsey) grown in expanded clay. Acta Sci. Pol., Hortorum Cultus, 7(4), 77–88.
Komosa A., 2002. Podłoża inertne – postęp czy inercja? Zesz. Probl. Post. Nauk Roln., 485, 147–167.
Kowalska I., Sady W., Szura A., 2006. Wpływ formy nawozu azotowego, dokarmiania dolistnego i miejsca uprawy na plonowanie i jakość sałaty. Acta Agrioph., 7(3), 619–631.
Markiewicz B., Golcz A., Politycka B., 2004. Effect of substrate utilization time on the yield of eggplant (Solanum melongena L.). Rocz. AR Pozn., CCCLVI, Ogrodn. 37, 153–157.
Meinken E., 1997. Accumulation of nutrients in expanded clay used for indoor plantings. Acta Hort., 450, 321–328.
Nurzyński J., 2006. Plonowanie i skład chemiczny pomidora uprawianego w szklarni w podłożach ekologicznych. Acta Agroph., 7(3), 681–690.
Nurzyński J., Jarosz Z., Michałojć Z., 2012. Yielding and chemical composition of greenhouse tomato fruit grown on straw or rockwool substrates. Acta Sci. Pol., Hortorum Cultus 11(3) 2012, 79–89.
Ostrowska A., Gawliński S., Szczubiałka Z., 1991. Metody analizy i oceny gleb i roślin. Instytut Ochrony Środowiska, Warszawa.
Pawlińska A., Komosa A., 2000. Plonowanie pomidora szklarniowego uprawianego w podłożach tradycyjnych i inertnych. VIII Konferencja Naukowa, „Efektywność stosowania nawozów w uprawach ogrodniczych. Zmiany ilościowe i jakościowe w warunkach stresu”. Warszawa, 122–124.
Piróg J., 1998a. Plonowanie pomidora na różnych podłożach w drugim roku użytkowania. „Agrotechniczne, fizjologiczne i genetyczne czynniki wczesności plonowania roślin warzywnych”, ART. Bydgoszcz, Zesz. Nauk. 215, Rolnictwo 42, 185–189.
Piróg J., 1998b. Plonowanie ogórka szklarniowego na podłożach mineralnych powtórnie użytkowanych. Zesz. Probl. Post. Nauk Roln., 461, 357–364.
PN-A-04019 1998. Oznaczanie zawartości witaminy C.
PN-90/A-75101/03. Oznaczanie zawartości suchej masy metodą wagową.
Rutkowska U., 1981. Wybrane metody badań składu i wartości odżywczej żywności. PZWL, Warszawa
Sonneveld C., Voogt W., 2009. Plant nutrition of greenhouse crops. Springer Dordrecht Heidelberg, London, New York.
Tantawy A.S., Abdel-Mawgout A.M.R., El-Nemr M.A., Chamoun Y., 2009. Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Europ. J. Scien. Res., 30(3): 484–494.
Wierzbicka B., Kuskowska M., 2002. Wpływ wybranych czynników na zawartość witaminy C w warzywach. Acta Sci. Pol., Hortorum Cultus, 1(2), 49–57.
Download

Published
2012-12-31



Zbigniew Jarosz 
University of Life Sciences in Lublin
Katarzyna Dzida 
University of Life Sciences in Lublin
Renata Nurzyńska-Wierdak 
University of Life Sciences in Lublin



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>