Black bean aphid populations and chlorophyll composition changes as responses of guelder rose to aphid infestation stress conditions

Sylwia Goławska

Siedlce University of Natural Sciences and Humanities, Faculty of Sciences, Prusa 14, 08-110 Siedlce, Poland

Iwona Łukasik

Siedlce University of Natural Sciences and Humanities, Faculty of Sciences, Prusa 14, 08-110 Siedlce, Poland

Artur Goławski

Siedlce University of Natural Sciences and Humanities, Faculty of Sciences, Prusa 14, 08-110 Siedlce, Poland


Aphis fabae Scop. is phloem-feeding insect that cause substantial damage to horticulare and agriculture worldwide due to feeding – related damage and the transmission of economically important plant viruses. These aphids cause a detrimental effects in attacked organs, like depletion of photoassimilates. Insect feeding can among others reduced chlorophyll catabolism. In the present investigations we determined the chlorophyll a and b levels (SPAD readings) in uninfested leaves and in Aphis fabae-infested leaves of Viburnum opulus shrubs, wild plants and garden variety, which were grown in green areas around Siedlce, east central Poland. Feeding by A. fabae affected chlorophyll a + b level. The insect feeding reduces the concentration of photosynthetic pigment in the infested shrubs. The level of chlorophyll in plants occupied by aphids was clearly lower than the level in plants where aphids were not found. We also found that chlorophyll levels increased with the progress of growing season, the level of chlorophyll differed between date of survey, being higher for the latest survey (mid-June) and that the place where the plant is located is important, wild V. opulus have slightly more level of chlorophyll compared to garden ones. Chlorophyll level might be useful as an indicator of plant responses to aphid damage.


Aphis fabae, chlorophyll a b, garden variety, wild plants, SPAD values, Viburnum opulus

Abbot, P., Tooker, J., Lawson, S.P. (2018). Chemical ecology and sociality in aphids: opportunities and directions. J. Chem. Ecol., 44, 770–784. DOI:

Adebayo, A.H., Balade, A., Yakubu, O.F. (2017). Gas chromatography-mass spectrometry analysis of Viburnum opulus (L.) extract and its toxicity studies in rats. Asian J. Pharm. Clin. Res., 10(6), 383–388. DOI:

Beketov, M.A., Kefford, B.J., Schäfer, R.C., Liess, M. (2013). Pesticides reduce regional biodiversity of stream invertebrates. PNAS, 110(27), 11039–11043. DOI:

Botha, A.M., Lacock, L., van Niekerk, C., Matsioloko, M.T., du Preez, F.B., Loots, S., Venter, E., Kunert, K.J., Cullis, C.A. (2006). Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. ‘Tugela DN’ a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Rep., 25, 41–54. DOI:

Burd, J.D., Elliott, N.C. (1996). Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol., 89(5), 1332–1337. DOI:

Česonienė, L., Daubaras, R., Vencloviene, J., Viškelis, P. (2010). Biochemical and agro-biological diversity of Viburnum opulus genotypes. Open Life Sci., 5(6), 864–871. DOI:

Czerniewicz, P., Leszczyński, B., Chrzanowski, G., Sempruch, C., Sytykiewicz, H. (2011). Effects of host plant phenolics on spring migration of bird cherry-oat aphid (Rhopalosiphum padi L.). Allelopathy J., 27(2), 309–316.

Deineka, V.I., Sorokopudov, V.N., Deineka, L.A., Shaposhnik, E.I., Kol’tsov, S.V. (2005). Anthocyanins from fruit of some plants of the Capriofoliaceae family. Chem. Nat. Compd., 41, 162–164. DOI:

Fajinmi, A.A., Odebode, C.A., Fajinmi, O.B. (2011). The effect of agro-ecological zones on the incidence and distribution of aphid vectors of pepper veinal mottle virus, on cultivated pepper (Capsicum annuum L.) in Nigeria. J. Cent. Eur. Agric., 12(3), 528–542. DOI:

Fanizza, G., Ricciardi, L., Bagnulo, C. (1991). Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica, 55, 27–32. DOI:

Goławska, S. (2007). Deterrence and toxicity of plant saponins for the pea aphid Acyrthosiphon pisum Harris. J. Chem. Ecol., 33, 1598–1606. DOI:

Goławska, S., Krzyżanowski, R., Łukasik, I. (2010). Relationship between aphid infestation and chlorophyll content in Fabaceae species. Acta Biol. Cracov. Bot., 52(2), 82–86. DOI:

Goławska, S., Łukasik, I., Leszczyński, B. (2008). Effect of alfalfa saponins and flavonoids on pea aphid. Entomol. Exp. Appl., 128(1), 147–153. DOI:

Goławska, S., Łukasik, I., Wójcicka, A., Sytykiewicz, H. (2012). Relationship between saponin content in alfalfa and aphid development. Acta Biol. Cracov. Bot., 54(2), 1–8. DOI:

Goławska, S., Leszczyński, B., Oleszek, W. (2006). Effect of low and high-saponin of alfalfa on pea aphid. J. Insect Physiol., 52(7), 737–743. DOI:

Gutsche, A.R., Heng-Moss, T.M., Higley, L.G., Sarath, G., Mornhinweg, D.W. (2009). Physiological responses of resistant and susceptible barley, Hordeum vulgare to the Russian wheat aphid, Diurpahis noxia (Mordvilko). Arthropod Plant Interact., 3, 233–240. DOI:

Haile, F.J., Higley, L.G., Ni, X., Quisenberry, S.S. (1999). Physiological and growth tolerance in wheat to Russian wheat aphid (Homoptera: Aphididae) injury. Environ. Entomol., 28(5), 787–794. DOI:

Heng-Moss, T.M., Ni, X., Macedo, T., Markwell, J.P., Baxendale, F.P., Quisenberry, S.S., Tolmay, V. (2003). Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. J. Econ. Entomol., 96(2), 475–481. DOI:

IBM Corp. (2012). IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.

Janave, M.T. (1997). Enzymatic degradation of chlorophyll in cavendish bananas: In vitro evidence for two independent degradative pathways. Plant Physiol. Biochem., 35, 837–846.

Kafel, A., Nadgórska-Socha, A., Gospodarek, J., Babczyńska, A., Skowronek, M., Kandziora, M., Rozpędek, K. (2010). The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Sci. Total Environ., 408(5), 1111–1119. DOI:

Kollmann, J., Grubb, P.J. (2002). Viburnum lantana L. and Viburnum opulus L. (V. lobatum Lam., Opulus vulgaris Borkh.). J. Ecol., 90(6), 1044–1070. DOI:

Konarska, A., Domaciuk, M. (2017). Differences in the fruit structure and the location and content of bioactive substances in Viburnum opulus and Viburnum lantana fruits. Protoplasma, 255, 25–41. DOI:

Lawson, T., Craigon, J., Tulloch, A.-M., Black, C.R., Colls, J.J., Landon, G. (2001). Photosynthetic responses to elevated CO2 and ozone in field-grown potato (Solanum tuberosum). J. Plant Physiol., 15(3), 309–323. DOI:

Li, W., Hydamaka, A.W., Lowry, L., Beta, T. (2009). Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. Cent. Eur. J. Biol., 4(4), 499–506. DOI:

Łukasik, I., Goławska, S., Wójcicka, A. (2012). Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Pol. J. Environ. Stud., 21(6), 1937–1941.

Macedo, T.B., Bastos, C.S., Higley, L.G., Ostlie, K.R., Madhavan, S. (2003). Photosynthetic responses of soybean to soybean aphid (Homoptera: Aphididae) injury. J. Econ. Entomol., 96(1), 188–193. DOI:

Mandal, M., Mukherji, S. (2000). Changes in chlorophyll contents, chlorophyllase activity, Hill reaction photosynthetic CO2 uptake, sugar and starch content in five dicotyledonous plants exposed to automobile exhaust pollution. J. Environ. Biol., 21(1), 37–41.

Morgham, A.T., Richardson, P.E., Campbell, R.K., Burd, J.D., Eikenbary, R.D., Sumner, L.C. (1994). Ultrastructural responses of resistant and susceptible wheat to infestation by greenbug biotype E (Homoptera: Aphididae). Ann. Entomol. Soc., 87(6), 908–917. DOI:

Nebreda, M., Moreno, A., Pérez, N., Palacios, I., Seco-Fernández, V., Fereres, A. (2004). Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus. Virus Res., 100(1), 83–88. DOI:

Ni, X., Quisenberry, S.S., Heng-Moss, T., Markwell, J., Higley, L., Baxendale, F., Sarath, G., Klucas, R. (2002). Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomol. Exp. Appl., 105(1), 43–53. DOI:

Ni, X., Quisenberry, S.S., Markwell, J., Heng-Moss, T., Higley, L., Baxendale, F,. Sarath, G., Klucas, R. (2001). In vitro enzymatic chlorophyll catabolism in wheat elicited by cereal aphid feeding. Entomol. Exp. Appl., 101(2), 159–166. DOI:

Osbourn, A.E. (2003). Molecules of interest, saponins in cereals. Phytochemistry, 62(1), 1–4. DOI:

Oxborough, K. (2004). Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J. Exp. Bot., 55(400), 1195– 1205. DOI:

Rao, S.A., Carolan, J.C., Wilkinson, T.L. (2013). Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One, 8(2), e57413. DOI:

Riedell, W.E., Blackmer, T.M. (1999). Leaf reflectance spectra of cereal aphid damaged wheat. Crop Sci., 39(6), 1835–1840. DOI:

Samsone, I., Andersone, U., Vikmane, M., Ieviņa, B., Pakarna, G., Ievinsh, G. (2007). Nondestructive methods in plant biology: an accurate measurement of chlorophyll content by a chlorophyll meter. Acta Univ. Latv. Biol., 723, 145–154.

Schröder, M.L., Glinwood, R., Ignell, R., Krüger, K. (2017). The role of visual and olfactory plant cues in aphid behaviour and the development of non-persistent virus management strategies. Arthropod Plant Interact., 11, 1–13. DOI:

Sprawka, I., Goławska, S., Czerniewicz, P., Sytykiewicz, H. (2011). Insecticidal action of phytohemagglutinin (PHA) against the grain aphid, Sitobion avenae. Pestic. Bioch. Physiol., 100(1), 64–69. DOI:

Sprawka, I., Goławska, S., Goławski, A., Czerniewicz, P., Sytykiewicz, H. (2012). Antimetabolic effect of phytohemagglutinin to the grain aphid Sitobion avenae Fabricius. Acta Biol. Hung., 63(3), 342–353. DOI:

Sprawka, I., Goławska, S., Parzych, T., Goławski, A., Czerniewicz, P., Sytykiewicz, H. (2013). Induction of apoptosis in the grain aphid Sitobion avenae (Hemiptera:Aphididae) under the influence of phytohaemagglutinin PHA. Appl. Entomol. Zool., 48, 525–542. DOI:

Sytykiewicz, H., Czerniewicz, P., Sprawka, I., Goławska, S., Chrzanowski, G., Leszczyński, B. (2011a). Induced proteolysis within the bird cherry leaves evoked by Rhopalosiphum padi L. (Hemiptera, Aphidoidea). Acta Biol. Hung., 62(3), 316–327. DOI:

Sytykiewicz, H., Czerniewicz, P., Sprawka, I., Krzyżanowski, R. (2013). Chlorophyll content of aphid-infested seedlings leaves of fifteen maize genotypes. Acta Biol. Cracov. Bot., 55(2), 51–60. DOI:

Sytykiewicz, H., Goławska, S., Chrzanowski, G. (2011b). Effect of the bird cherry-oat aphid, Rhopalosiphum padi L. feeding on phytochemical responses within the bird cherry. Pol. J. Ecol., 59(2), 329–338.

Tomassini, L., Brkic, D., Foddai, S., Nicoletti, M. (1997). Iridoid glucosides from Viburnum rhytidophyllum. Phytochemistry, 44, 751–753. DOI:

Wang, T., Quisenberry, S.S., Ni, X., Tolmay, V. (2004). Enzymatic chlorophyll degradation in wheat near-isogenic lines elicited by cereal aphid (Homoptera: Aphididae) feeding. J. Econ. Entomol., 97(2), 661–667. DOI:

Webster, B., Bruce, T., Pickett, J., Hardie, J. (2010). Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav., 79(2), 451–457. DOI:

Yilmaz, N., Nuran, Y., Misir, G., Çoskunçelebi, K., Karaoglu, S., Yaylı, N. (2008). Chemical composition and antimicrobial activities of the essential oils of Viburnum opulus, Viburnum lantana and Viburnum orientala. Asian J. Chem., 20(5), 3324–3330.

Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T., Sampson, P.H. (2002). Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J. Environ. Qual., 31(5), 1433–1441. DOI:

Zvereva, E.L., Lanta, V., Kozlov, M.V. (2010). Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia, 163, 949–960. DOI:

Zytynska, S.E., Mayer, S.T., Sturm, S., Ullmann, W., Mehrparvar, M., Weisser, W.W. (2016). Secondary bacterial symbiont community in aphids responds to plant diversity. Oecologia, 180, 735–747. DOI:



Sylwia Goławska 
Siedlce University of Natural Sciences and Humanities, Faculty of Sciences, Prusa 14, 08-110 Siedlce, Poland
Iwona Łukasik 
Siedlce University of Natural Sciences and Humanities, Faculty of Sciences, Prusa 14, 08-110 Siedlce, Poland
Artur Goławski 
Siedlce University of Natural Sciences and Humanities, Faculty of Sciences, Prusa 14, 08-110 Siedlce, Poland


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.


Most read articles by the same author(s)