THE RELATIONSHIP BETWEEN RAPD MARKER-BY-MARKER INTERACTIONS AND QUANTITATIVE TRAITS OF CARAWAY (Carum carvi L.)

Jan Bocianowski

Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland

Katarzyna Seidler-Łożykowska

Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71B, 60-630 Poznań, Poland

Kamila Nowosad

Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland

Anetta Kuczyńska

Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland


Abstract

Application of molecular markers makes the selection process much more effective. Marker assisted selection is an important tool for plant breeders to increase the efficiency of a breeding process, especially for multigenic traits, highly influenced by the environment. Epistasis is the interaction between alleles from two or more loci determining the complex traits, and thus plays an important role in the development of quantitative traits of crops. In this paper, the relationships between RAPD marker-by-marker interactions and 22 quantitative traits of caraway (Carum carvi L.) were analyzed. Significant associations of 116 epistatic markers with at least one trait in 2004 as well as 112 in 2005 were found on the basis of multivariate regression analysis. The proportion of total phenotypic variances of individual trait explained by the marker-by-marker interactions ranged from 25.3% to 96.0%.

Keywords:

caraway, interaction, molecular markers, RAPD-PCR, morphological traits

Arnholdt-Schmitt, B. (2002). Characterization of Hypericum perforatum L. plants from various accessions by RAPD fingerprinting. J. Herbs Spices Med. Plants, 9(2/3), 163–170.

Bocianowski, J. (2012a). A comparison of two methods to estimate additive-by-additive interaction of QTL effects by a simulation study. J. Theor. Biol., 308, 20–24.

Bocianowski, J. (2012b). Analytical and numerical comparisons of two methods of estimation of additive  additive interaction of QTL effects. Sci. Agric., 69(4), 240–246.

Bocianowski, J. (2013). Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet. Mol. Biol., 36(1), 93–100.

Bocianowski, J. (2014). Estimation of epistasis in doubled haploid barley populations considering interactions between all possible marker pairs. Euphytica, 196, 105–115.

Bocianowski, J., Krajewski, P. (2009). Comparison of the genetic additive effect estimators based on phenotypic observations and on molecular marker data. Euphytica, 165, 113–122.

Bocianowski, J., Nowosad, K. (2015). Mixed linear model approaches in mapping QTLs with epistatic effects by a simulation study. Euphytica, 202, 459–467.

Bocianowski, J., Seidler-Łożykowska, K. (2012). The relationship between RAPD markers and quantitative traits of caraway (Carum carvi L.). Ind. Crop. Prod., 36, 135–139.

Borecki, I.B., Province, M.A. (2008). Genetic and genomic discovery using family studies. Circulation, 118, 1057–1063.

Chatterjee, N., Kalaylioglu, Z., Moslehi, R., Peters, U., Wacholder, S. (2006). Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environmental interactions. Am. J. Hum. Genet., 79, 1002–1016.

Clarke, G.M., Pettersson, F.H., Morris, A.P. (2009). A comparison of case-only designs for detecting gene  gene interaction in rheumatoid arthritis using genome-wild case-control data in Genetic Analysis Workshop 16. BMC Proc., 3, S73. DOI:10.1186/1753-6561-3-S7-S73

Doyle, J.J., Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

European Pharmacopoeia VI (2008). Monograph 01/2008:2098 ‘Essential oils’. Vol. 1. Council of Europe, Strasbourg, 680–682 pp.

Imtiaz, M., Ogbonnaya, F.C., Oman, J., van Ginkel, M. (2008). Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics, 178, 1725–1736.

Jung, J., Song, J.J., Kwon, D. (2009). Allelic based gene-gene interactions in rheumatoid arthritis. BMC Proc., 3, S76. DOI:10.1186/1753-6561-3-S7-S76

Kiełtyka-Dadasiewicz, A., Okoń, S., Ociepa, T., Król B. (2017). Morphological and genetic diversity among peppermint (Mentha ×piperita L.) cultivars. Acta Sci. Pol. Hortorum Cultus, 16(3), 151–161.

Klöcke, E., Langbehn, J., Grewe, C., Pank, F. (2002). DNA fingerprinting by RAPD on Origanum majorana L. J. Herbs Spices Med. Plants, 9(2/3), 171–176.

Krajewski, P., Bocianowski, J., Gawłowska, M., Kaczmarek, Z., Pniewski, T., Święcicki, W., Wolko, B. (2012). QTL for yield componenets and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica, 183, 323–336.

Lema-Rumińska, J., Miler, N., Gęsiński, K. (2018). Identification of new polish lines of Chenopodium quinoa (Willd.) by spectral analysis of pigments and a confirmation of genetic stability with SCoT and RAPD markers. Acta Sci. Pol. Hortorum Cultus, 17(1), 75–86.

Li, J., Tang, R., Biernacka, J.M., de Andrade, M. (2009). Identification of gene-gene interaction using principal components. BMC Proc., 3, S78. DOI:10.1186/1753-6561-3-S7-S78

Li, Z.K., Pinson, S.R.M., Park, W.D., Paterson, A.H., Stansel, J.W. (1997a). Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 145, 453–465.

Li, Z.K., Pinson, S.R.M., Paterson, A.H., Park, W.D., Stansel, J.W. (1997b). Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa L.) population. Genetics, 145, 1139–1148.

Liersch, A., Bocianowski, J., Kozak, M., Bartkowiak-Broda, I. (2013). Comparison of isozyme, RAPD and AFLP markers in genetic similarity assessment of CMS ogura F1 hybrids of winter oilseed rape (Brassica napus L.) parental lines. Acta Biol. Cracov. Bot., 55(1), 49–57.

Ma, X.Q., Tang, J.H., Teng, W.T., Yan, J.B., Meng, Y.J., Li, J.S. (2007). Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol. Breed., 20, 41–51.

Messmer, M., Scheider, E., Stekly, G., Buter, B. (2002). Determination of the progenitors and the genetic stability of artichoke cultivar Saluschocke using molecular markers. J. Herbs Spices Med. Plants, 9(2/3), 177–182.

Peng, B., Li, Y., Wang, Y., Liu, C., Liu, Z., Tan, W., Zhang, Y., Wang, D., Shi, Y., Sun, B., Song, Y., Wang, T., Li, Y. (2011). QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor. Appl. Genet., 122, 1305–1320.

Rakoczy-Trojanowska, M., Krajewski, P., Bocianowski, J., Schollenberger, M., Wakuliński, W., Milczarski, P., Masojć, P., Targońska-Karasek, M., Banaszak, Z., Banaszak, K., Brukwiński, W., Orczyk, W., Kilian, A. (2017). Identification of single nucleotide polymorphisms associated with brown rust resistance, -amylase activity and pre-harvest sprouting in rye (Secale cereale L.). Plant Mol. Biol. Rep., 35, 366–378.

Sadowska, A., Obidoska, G. (1998). Pharmacological uses and toxicology of caraway. In: Caraway. The Genius Carum, Németh, E. (ed.). Harwood Academic Publishers, London, 165–174.

Seidler-Łożykowska, K., Bocianowski, J. (2012). Evaluation of variability of morphological traits of selected caraway (Carum carvi L.) genotypes. Ind. Crop. Prod., 35, 140–145.

Sen, S., Churchill, G.A. (2001). A statistical framework for quantitative trait mapping. Genetics, 159, 371–387.

Shapiro, S.S., Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

Skuza, L., Rogalska, S.M., Dyba, S.M., Bocianowski, J. (2013). RAPD polymorphism in the prebreeding material for cultivation of synthetic variations of lucerne (Medicago sativa L.). Cent. Eur. J. Biol., 8(1), 38–47.

Wetzel, S.B., Krüger, H., Hammer, K., Bachmann, K. (2002). Investigations on morphological, biochemical and molecular variability of Ocimum L. species. J. Herbs Spices Med. Plants, 9(2/3), 183–188.

Wu, P., Zhang, G., Huang, N., Ladha, J.K. (1995). Non-additive interaction conditioning spikelet sterility in an F2 population of an indica/japonica cross in rice. Theor. Appl. Genet., 91, 825–829.

Yan, J.B., Tang, H., Huang, Y.Q., Zheng, Y.L., Li, J.S. (2006). Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 149, 121–131.

Zhao, J., Meng, J. (2003). Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brasicca napus L.). Theor. Appl. Genet., 106, 759–764.

Download

Published
2019-06-18



Jan Bocianowski 
Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
Katarzyna Seidler-Łożykowska 
Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71B, 60-630 Poznań, Poland
Kamila Nowosad 
Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland
Anetta Kuczyńska 
Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland



License

 

Articles are made available under the conditions CC BY 4.0 (until 2020 under the conditions CC BY-NC-ND 4.0).
Submission of the paper implies that it has not been published previously, that it is not under consideration for publication elsewhere.

The author signs a statement of the originality of the work, the contribution of individuals, and source of funding.

 


Most read articles by the same author(s)