Agronomy Science, przyrodniczy lublin, czasopisma up, czasopisma uniwersytet przyrodniczy lublin
Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Tom 79 Nr 4 (2024)

Artykuły

Effect of foliar application of biostimulants on the yield and quality of Greek oregano herb (Origa-num vulgare L. subsp. hirtum (Link.) Ietswaart)

DOI: https://doi.org/10.24326/as.2024.5462
Przesłane: 6 grudnia 2024
Opublikowane: 18.03.2025

Abstrakt

The field experiment was carried out on a private farm in Trębanów, Świętokrzyskie Province, in 2020–2022. The aim of the study was to determine the effect of selected biopreparations on the morphological traits of plants, the size and structure of yields, and the content and yield of Greek oregano essential oil. Natural biostimulants Stimplex (2 dm3 ha–1), Tecamin Max (1.5 dm3 ha–1), and Kendal
(1 dm3 ha–1) were used in the study. The results demonstrated positive effects of the foliar application of the biostimulants on the morphological, performance, and quality parameters of Greek oregano. The most effective treatment was the application of the biostimulant containing extracts of Ascophyllum nodosum algae (Stimplex), followed by the preparation containing amino acids (Tecamin Max). They increased the plant growth rate, the number of lateral branches, and the raw material yield and had a positive effect on the content of essential oil. The size and quality of the Greek oregano yield also depended on the age of the plants and varied between the study years. Higher raw material and oil yields were obtained from two-year plantations. The drought in 2022 limited plant growth and resulted in a lower yield; nevertheless, the essential oil content in the herb increased in these conditions..

Bibliografia

  1. Alekseeva M., Zagorcheva T., Atanassov I., Rusanov K., 2020. Origanum vulgare L. – a review on genetic diversity, cultivation, biological activities, and perspectives for molecular breeding. Bulg. J. Agric. Sci. 26, 1183–1197.
  2. Abdali R., Rahimi A., Siavash Moghaddam S., Heydarzadeh S., Arena C., Vitale E., Zamanian M., 2023. The role of stress modifier biostimulants on adaptive strategy of oregano plant for incre-asing productivity under water shortage. Plants 12(24), 4117. https://doi.org/10.3390/plants12244117
  3. Alvarez I.Z., Ahmed M., McSorley G., Dunlop M., Lucas I., Hu Y., 2024. An overview of biosti-mulant activity and plant responses under abiotic and biotic stress conditions. Syst. Microbiol. Biomanuf. 4(1), 39–55. https://doi.org/10.1007/s43393-023-00182-3
  4. Amato G., Cardone L., Cicco N., Denora M., Perniola M., Casiello D., Candido V., 2024. Morphological traits yield antioxidant activity and essential oil composition of oregano as affected by biostimulant foliar applications. Ind. Crop. Prod. 22, 119702. https://doi.org/10.1016/j.indcrop.2024.119702
  5. Azizi A., Yan F., Honermeier B., 2009. Herbage yield, essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and ni-trogen supply. Ind. Crop. Prod. 29, 554–561. https://doi.org/10.1016/j.indcrop.2008.11.001
  6. Bajguz A., Piotrowska-Niczyporuk A., 2023. Biosynthetic pathways of hormones in plants. Meta-bolites 13(8), 884. https://doi.org/10.3390/metabo13080884
  7. Baltazar M., Correia S., Guinan K.J., Sujeeth N., Bragança R., Gonçalves B., 2021. Recent advan-ces in the molecular effects of biostimulants in plants: An overview. Biomolecules 11(8), 1096. https://doi.org/10.3390/biom11081096
  8. Baranauskiene R., Venskutonis P.R., Dambrauskienie E., Viškelis P., 2013. Harvesting time influ-ences the yield and oil composition of Origanum vulgare. ssp. vulgare and ssp. hirtum. Ind. Crops Prod. 49, 43–51. https://doi.org/10.1016/j.indcrop.2013.04.024
  9. Bell J.C., Bound S.A., Buntain M., 2022. Biostimulants in agricultural and horticultural production. Hortic. Rev. 49, 35–95. https://doi.org/10.1002/9781119851981.ch2
  10. Bulgari R., Cocetta G., Trivellini A., Vernieri P., Ferrante A., 2015. Biostimulants and crop respon-ses: A review. Biol. Agric. Hort. 31, 1–17. https://doi.org/10.1080/01448765.2014.964649
  11. Calvo P., Nelson L., Kloepper J.W., 2014. Agricultural uses of plant biostimulants. Plant Soil. 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8
  12. Chishti S., Kaloo Z.A., Sultan P., 2013. Medicinal importance of genus Origanum: A review. J. Pharmacogn. Phytother. 5, 170–177. https://doi.org/10.5897/JPP2013.0285
  13. Chitu V., Chitu E., Ancu I., Mladin P., Nicolae S., 2012. Foliar nutrients impact on fruit quality an yield of highbush blueberry. Fruit Grow. Res. XXVIII, 112–117.
  14. De Saeger J., Van Praet S., Vereecke D., Park J., Jacques S., Han T., Depuydt S., 2020. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J. Appl. Phycol. 32(1), 573–597. https://doi.org/10.1007/s10811-019-01903-9
  15. Dordas C.A., 2009. Foliar application of calcium and magnesium improves growth. yield. and es-sential oil yield of oregano (Origanum vulgare ssp. hirtum). Ind. Crops Prod. 29, 599–608. https://doi.org/10.1016/j.indcrop.2008.11.004
  16. Drobek M., Frąc M., Cybulska J., 2019. Plant biostimulants: The importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – A review. Agronomy 9, 335. https://doi.org/10.3390/agronomy9060335
  17. Elansary H.O., Yessoufou K., Shokralla S., Mahmoud E.A., Skalicka-Wozniak K., 2016. Enhan-cing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind. Crops Prod. 92, 50–56. https://doi.org/10.1016/j.indcrop.2016.07.048
  18. Euro+Med, 2024. Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/ [access:18.09.2024].
  19. Farmakopea Polska XI, 2017. PTF, Warszawa.
  20. Farruggia D., Di Miceli G., Licata M., Urso G., Leto C., Novak J., 2024a. Seaweed extract and fulvic acid application affect the biomass performance. the essential oil yield and composition of Sicilian oregano grown in an organic agricultural system. Ind. Crops Prod. 222, 119790. https://doi.org/10.1016/j.indcrop.2024.119790
  21. Farruggia D., Tortorici N., Iacuzzi N., Alaimo F., Leto C., Tuttolomondo T., 2024b. Biostimulants Improve plant performance of rosemary growth in agricultural organic system. Agronomy 14(1), 158. https://doi.org/10.3390/agronomy14010158
  22. Farruggia D., Di Miceli G., Licata M., Leto C., Salamone F., Novak J., 2024c. Foliar application of various biostimulants produces contrasting response on yield. essential oil and chemical pro-perties of organically grown sage (Salvia officinalis L.). Front. Plant Sci. 15, 1397489. https://doi.org/10.3389/fpls.2024.1397489
  23. Giannoulis K.D., Kamvoukou C.A., Gougoulias N., Wogiatzi E., 2020. Irrigation and nitrogen application affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition. Ind. Crops Prod. 150, 112392. https://doi.org/10.1016/j.indcrop.2020.112392
  24. Gonceariuc M., Muntean M.V., Butnaraş V., Duda M.M., Benea A., Jelezneac T., Botnarenco P., 2021. Quality variation of the Moldovan Origanum vulgare L. ssp. vulgare L. and Origanum vulgare L. ssp. hirtum (Link) Ietsw. Varieties in Drought Conditions. Agriculture 11(12), 1211. https://doi.org/10.3390/agriculture11121211
  25. Grevsen K., Frette XC., Christensen L.P., 2009. Content and composition of volatile terpens, flavo-noids and phenolic acids in Greek oregano (Origanum vulgare L. ssp. hirtum) at different development stages during cultivation in cool temperate climate. Eur. J. Hort. Sci. 74(5), 193–220.
  26. Gutiérrez-Grijalva E.P., Picos-Salas M.A., Leyva-López N., Criollo-Mendoza M.S., Vazquez-Olivo G., Heredia J.B., 2017. Flavonoids and phenolic acids from oregano: Occurrence, bio-logical activity and health benefits. Plants 7, 2. https://doi.org/10.3390/plants7010002
  27. Jafari Khorsand G., Morshedloo M.R, Mumivand H., Emami Bistgani Z., Maggi F., Khademi A., 2022. Natural diversity in phenolic components and antioxidant properties of oregano (Origa-num vulgare L.) accessions, grown under the same conditions. Sci. Rep. 12, 5813. https://doi.org/10.1038/s41598-022-09742-4
  28. du Jardin P., 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  29. Jiang Y., Yue Y., Wang Z., Lu C., Yin Z., Li Y., Ding X., 2024. Plant Biostimulant as an Envi-ronmentally Friendly Alternative to Modern Agriculture. J. Agric. Food Chem. 72(10), 5107–5121. https://doi.org/10.1021/acs.jafc.3c09074
  30. Jaiswal A., Verma M., Pandey S., Chitnavis S., Pathak R., Shah K., Chauhan D.N., Chauhan N.S., 2024. Health benefits of oregano extract. in plant-based bioactive compounds and food ingre-dients. Apple Academic Press. Palm Bay, FL, USA, 271–284.
  31. Johnson R., Joel J.M., Puthur J.T., 2024. Biostimulants: The futuristic sustainable approach for alleviating crop productivity and abiotic stress tolerance. J. Plant Growth Regul. 43, 659–674. https://doi.org/10.1007/s00344-023-11144-3
  32. Jayaraman J., Norrie J., Punja Z.K., 2011. Commercial extract from the brown seaweed Ascophyl-lum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol. 23, 353–361. https://doi.org/10.1007/s10811-010-9547-1
  33. Karamanos A., Sotiropoulou D., 2013. Field study of nitrogen application on Greek oregano (Ori-ganum vulgare ssp. hirtum (Link) Ietswaart) essential oil during two cultivation seasons. Ind. Crops Prod. 46, 246–252. https://doi.org/10.1016/j.indcrop.2013.01.021
  34. Kawade K., Tabeta H., Ferjani A., Hirai M.Y., 2023. The roles of functional amino acids in plant growth and development. Plant Cell Physiol. 64(12), 1482–1493. https://doi.org/10.1093/pcp/pcad071
  35. Kokkini S., Karousou R., Vokou D., 1994. Pattern of geographic variations of Origanum vulgare trichomes and essential oil content in Greece. Biochem. Syst. Ecol. 22(5), 517–528. https://doi.org/10.1016/0305-1978(94)90046-9
  36. Kosakowska O., Czupa W., 2018. Morphological and chemical variability of common oregano (Origanum vulgare L. subsp. vulgare) occurring in eastern Poland. Herba Pol. 64, 11–21. https://doi.org/10.2478/hepo-2018-0001
  37. Kosakowska O., Węglarz Z., Bączek K., 2019. Yield and quality of ‘Greek oregano’ (Origanum vulgare L. subsp. hirtum) herb from organic production system in temperate climate. Ind. Crops Prod. 141, 111782. https://doi.org/10.1016/j.indcrop.2019.111782
  38. Kosakowska O., Węglarz Z., Pióro-Jabrucka E., Przybył J.L., Kraśniewska, K., Gniewosz M., Bączek K., 2021. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common orega-no (O. vulgare L. subsp. vulgare). Molecules 26(4), 988. https://doi.org/10.3390/molecules26040988
  39. Król B., Kiełtyka-Dadasiewicz A., 2019. Effectiveness of foliar fertilizers in integrated crop produc-tion of thyme (Thymus vulgaris L.). Agron. Sci. 74(2), 15–23. http://dx.doi.org/10.24326/as.2019.2.2
  40. Król B., Kołodziej B., Kędzia B., Hołderna-Kędzia E., Sugier D., Luchowska K., 2019. Date of harvesting affects yields and quality of Origanum vulgare ssp. hirtum (Link) Ietswaart. J. Sci. Food Agric. 99(12), 5432–5443. https://doi.org/10.1002/jsfa.9805
  41. Król B., Sęczyk Ł., Kołodziej B., Paszko T., 2020. Biomass production, active substance content, and bioaccessibility of Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) follo-wing the application of nitrogen. Ind. Crops Prod. 148, 112271. https://doi.org/10.1016/j.indcrop.2020.112271
  42. Król B., 2023. Ocena efektów stosowania biostymulatorów w integrowanej uprawie majeranku ogrodowego (Origanum majorana L.) [Evaluation of biostimulants application in integrated crop production of sweet marjoram (Origanum majorana L.)]. Agron. Sci. 78(4), 115–126. https://doi.org/10.24326/as.2023.5271
  43. Kumari S., Sehrawat K.D., Phogat D., Sehrawat A.R., Chaudhary R., Sushkova S.N., Voloshina M.S., Rajput V.D., Shmaraeva A.N., Marc R.A., Shende S.S., 2023. Ascophyllum nodosum (L.) Le Jolis, a pivotal biostimulant toward sustainable agriculture: A comprehensive review. Agriculture 13(6), 1179. https://doi.org/10.3390/agriculture13061179
  44. Kyriakos D., Giannoulis Ch.A. Kamvoukou N.G., Wogiatzi E., 2020. Irrigation and nitrogen appli-cation affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition, Ind. Crops Prod. 150, 112392. https://doi.org/10.1016/j.indcrop.2020.112392
  45. Laftouhi A., Eloutassi N., Ech-Chihbi E., Rais Z., Abdellaoui A., Taleb A., Taleb M., 2023. The impact of environmental stress on the secondary metabolites and the chemical compositions of the essential oils from some medicinal plants used as food supplements. Sustainability 15(10), 7842. https://doi.org/10.3390/su15107842
  46. Le Mire G., Nguyen M. L., Fassotte B., du Jardin P., Verheggen F., Delaplace P., Jijakli M.H., 2016. Implementing plant biostimulants and biocontrol strategies in the agroecological mana-gement of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 299–313. https://doi.org/10.25518/1780-4507.12717
  47. Lukas B., Schmiderer C., Novak J., 2015. Essential oil diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry 119, 32–40. https://doi.org/10.1016/j.phytochem.2015.09.008
  48. Majkowska-Gadomska J., Jadwisieńczak K., Francke A., Kaliniewicz Z., 2022. Effect of biostimu-lants on the yield and quality of selected herbs. Appl. Sci. 12, 1500. https://doi.org/
  49. 10.3390/app12031500
  50. Mandal S., Anand U., López-Bucio J., Kumar M., Lal M. K., Tiwari R. K., Dey A., 2023. Biosti-mulants and environmental stress mitigation in crops: A novel and emerging approach for agri-cultural sustainability under climate change. Environ. Res. 233, 116357. https://doi.org/
  51. 10.1016/j.envres.2023.116357
  52. Market Analysis Report, 2023. Biostimulants market size, share & trends analysis report by active ingredients (acid based, microbial), by crop type, by application (foliar, soil treatment), by re-gion, and segment forecasts, 2023–2030. www.grandviewresearch.com/industry-analysis/biostimulants-market [access: 28.09.2024].
  53. Marhoon I.A., Abbas M.K., 2015. Effect of foliar application of seaweed extract and amino acids on some vegetative and anatomical characters of two sweet pepper (Capsicum annuum L.) cul-tivars. Int. J. Res. Stud. Agric. Sci. 1, 35–44.
  54. Mehrabi S., Mehrafarin A., Badi H.N., 2013. Clarifying the role of methanol and amino acids ap-plication on savory (Satureja hortensis L.). Ann. Biol. Res. 4(4), 190–195.
  55. Mehrafarin A., Qavami N., Tahmasebi Z., Naghdi Badi H., Abdossi V., Seif Sahandi M., 2015. Phytochemical and morpho-physiological responses of lemon balm (Melissa officinalis L.) to biostimulants application. J. Med. Plants. 14(55), 29–42.
  56. Mezeyova I., Fabianova J., Secanska K., 2022. Influence of amino acid-based stimulants on selec-ted quantitative and qualitative parameters in basil (Ocimum basilicum). J. Int. Sci. Publ., Agric. Food 10, 391–399. https://www.scientific-publications.net/en/article/1002495/
  57. Milos M., Mastelic J., Jerkovic I., 2000. Chemical composition and antioxidant effect of glycosidi-cally bound volatile compounds from Oregano (Origanum vulgare L. ssp. hirtum). Food Chem. 71(1), 79–83. https://doi.org/10.1016/S0308-8146(00)00144-8
  58. Morshedloo M.R., Mumivend H., Craker L.E., Maggi F., 2017. Chemical composition and antioxi-dant activity of essential oils in Origanum vulgare subsp. gracile at different phonological sta-ges and plant parts. J. Food. Process. Preserv. 42(2), 1–8. https://doi.org/10.1111/
  59. jfpp.13516
  60. Morshedloo M.R., Salami S.A., Nazeri V., Maggi F., Craker L., 2018. Essential oil profile of ore-gano (Origanum vulgare L.) populations grown under similar soil and climate conditions. Ind. Crops Prod. 119, 183–190. https://doi.org/10.1016/j.indcrop.2018.03.049
  61. Nassar M.A., EL-Kobisy O.S., Shaaban S.A., Abdelwahab H.M., 2020. Seaweed extract enhan-cing growth. fresh herb and essential oil of sweet marjoram (Origanum majorana L.). Plant Arch, 20. Supp.1. 3094–3101.
  62. Ninou E., Paschalidis K., Mylonas I., 2017. Essential oil responses to water stress in Greek orega-no populations. J. Essent. Oil Bear. Plants 20(1), 12–23. https://doi.org/10.1080/
  63. 0972060X.2016.1264278
  64. Ninou E., Cook C.M., Papathanasiou F., Aschonitis V., Avdikos I., Tsivelikas A.L., Mylonas I., 2021. Nitrogen effects on the essential oil and biomass production of field grown Greek ore-gano (Origanum vulgare subsp. hirtum) populations. Agronomy 11(9), 1722. https://doi.org/10.3390/agronomy11091722
  65. Nurzyńska-Wierdak R., Bogucka-Kocka A., Sowa I., Szymczak G., 2012. The composition of essential oil from three ecotypes of Origanum vulgare L. ssp. vulgare cultivated in Poland. Farmacia 2(60), 571–577.
  66. Omrani M., Ghasemi M., Modarresi M., Salamon I., 2023. Alternations in physiological and phy-tochemical parameters of German chamomile (Matricaria chamomilla L.) varieties in response to amino acid fertilizer and plasma activated-water treatments. Horticulturae 9(8), 857. https://doi.org/10.3390/horticulturae9080857
  67. Panagiotidou C., Bouloumpasi E., Irakli M., Chatzopoulou P., 2024. Characterization of natural bioactive compounds from Greek oregano accessions subjected to advanced extraction tech-niques. Plants 13(21), 3087. https://doi.org/10.3390/plants13213087
  68. Paradiković N., Ćosić J., Baličević R., Vinković T., Vrandečić K., Ravlić M., 2012. Utjecaj kemij-skih bioloških mjera na rast i razvoj presadnica paprika i suzbijanje fitopatogenih gljiva Pythium ultimum i Rhizoctonia solani. Glas. Zašt. Bilja 35(3) 50–56.
  69. Paradiković N., Teklić T., Zeljković S., Lisjak M., Špoljarević M., 2019. Biostimulants research in some horticultural plant species – A review. Food Energy Secur. e00162. https://doi.org/10.1002/fes3.162
  70. Pirani H., Ebadi M.T., Rezaei A., 2020. Effect of seaweed fertilizer foliar application on growth parameters, yield, and essential oil content and composition of hyssop (Hyssopus officinalis L.). Iranian J. Med. Aromatic Plants Res. 36(3), 376–389.
  71. Rahimi A., Mohammadi M.M., Siavash Moghaddam S., Heydarzadeh S., Gitari H., 2022. Effects of stress modifier biostimulants on vegetative growth nutrients and antioxidants contents of garden thyme (Thymus vulgaris L.) under water deficit conditions. J. Plant Growth Regul. 41(5), 2059–2072. https://doi.org/10.1007/s00344-022-10604-6
  72. Ricci M., Tilbury L., Daridon B., Sukalac K., 2019. General principles to justify plant biostimulant claims. Front Plant Sci. 10, 494. https://doi.org/10.3389/fpls.2019.00494
  73. Rodriguez-Garcia I., Silva-Espinoza B.A., Ortega-Ramirez L.A., Leyva J.M., Siddiqui M.W., Cruz-Valenzuela M.R., Gonzalez Aguilar G.A., Ayala-Zavala J.F., 2016. Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit. Rev. Food Sci. Nutr. 56(10), 1717–1727. https://doi.org/10.1080/10408398.2013.800832
  74. Sarrou E., Tsivelika N., Chatzopoulou P., Tsakalids G., Menexes G., Mavromatis A., 2017. Conventional breeding of Greek oregano (Origanum vulgare ssp. hirtum) and development of improved cultivars for yield potential and essential oil quality. Euphytica 213, 104. https://doi.org/10.1007/s10681-017-1889-1
  75. Shafie F., Bayat H., Aminifard MH. Daghighi S., 2021. Biostimulant effects of seaweed extract and amino acids on growth. antioxidants and nutrient content of yarrow (Achillea millefolium L.) in the field and greenhouse conditions. Commun. Soil Sci. Plant Anal. 52(9), 964–975. https://doi.org/10.1080/00103624.2021.1872596
  76. Shukla P.S., Mantin E.G., Adil M., Bajpai S., Critchley A.T., Prithiviraj B., 2019. Ascophyllum nodosum – based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 10, 655. https://doi.org/10.3389/fpls.2019.00655
  77. Singletary K., 2010. Oregano: overview of the literature on health benefits. Nutr. Today 45(3), 129–138. https://doi.org/10.1097/NT.0b013e3181dec789
  78. Sidhu V., Nandwani D., 2017. Effect of Stimplex® on yield performance of tomato in organic ma-nagement system. Ann. Adv. Agric. Sci. 1(1), 11–15. https://doi.org/10.22606/as.2017.11002
  79. Skoula M., Harborne J.B., 2002. Taxonomy and chemistry of Origanum. In: S.E. Kintzios (ed.), Oregano: the genera Origanum and Lippia. CRC Press, Taylon & Francis, London UK. 67–108. https://doi.org/10.1201/b12591
  80. Skoufogianni E., Solomou A.D., Danalatos N.G., 2019. Ecology, cultivation and utilization of the aromatic Greek oregano (Origanum vulgare L.): A review. Not. Bot. Horti Agrobot. Cluj Na-poca 47(3), 545–552. https://doi.org/10.15835/nbha47311296
  81. Skrypnik L., Maslennikov P., Antipina M., Katserov D., Feduraev P., 2024. Comparative study on the response of hyssop (Hyssopus officinalis L.), salvia (Salvia officinalis L.), and oregano (Origanum vulgare L.) to drought stress under foliar application of selenium. Plants 13(21), 2986. https://doi.org/10.3390/plants13212986
  82. Sun W., Shahrajabian M. H., Kuang Y., Wang N., 2024. Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants 13(2), 210. https://doi.org/10.3390/plants13020210
  83. Tawfeeq A., Culham A., Davis F., Reeves M., 2016. Does fertilizer type and method of application cause significant differences in essential oil yield and composition in rosemary (Rosmarinus officinalis L). Ind. Crop. Prod. 88, 17–22. https://doi.org/10.1016/j.indcrop.2016.03.026
  84. Tibaldi G., Fontana E., Nicola S., 2011. Growing conditions and postharvest management can affect the essential oil of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Ind. Crop Prod. 34, 1516–1522. https://doi.org/10.1016/J.indcrop.2011.05.008
  85. Węglarz Z., Kosakowska O., Przybył J.L., Pióro-Jabrucka E., Bączek K., 2020. The quality of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vul-gare L. subsp. vulgare) cultivated in the temperate climate of central Europe. Foods 9(11), 1671. https://doi.org/10.3390/foods9111671
  86. Wozniak E., Blaszczak A., Wiatrak P., Canady M., 2020. Biostimulant mode of action: impact of biostimulant on whole-plant level. In: D. Geelen, L. Xu (eds), Chemical biology of plant bio-stimulants, 205–227. https://doi.org/10.1002/9781119357254.ch8
  87. Wu Y.T., Lin C.H., 2000. Analysis of cytokinin activity in commercial aqueous seaweed extract. Gartenbauwissenschaft 65, 170–173.
  88. Veenstra J.P., Johnson J.J., 2019. Oregano (Origanum vulgare) extract for food preservation and improvement in gastrointestinal health. Int. J. Nutr. 3(4), 43. https://doi.org/10.14302/issn.2379-7835.ijn-19-2703
  89. Velička A., Tarasevičienė Ž., Hallmann E., Kieltyka-Dadasiewicz A., 2022. Impact of foliar applica-tion of amino acids on essential oil content odor profile and flavonoid content of different mint varieties in field conditions. Plants 11(21), 2938. https://doi.org/10.3390/plants11212938
  90. Vokou D., Kokkini S., Bessiere J.M., 1993. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 21(2), 287–295.
  91. Zhao Y., 2012. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5(2), 334–338. https://doi.org/10.1093/mp/ssr104

Downloads

Download data is not yet available.

Inne teksty tego samego autora

1 2 > >> 

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.