Abstrakt
The field experiment was carried out on a private farm in Trębanów, Świętokrzyskie Province, in 2020–2022. The aim of the study was to determine the effect of selected biopreparations on the morphological traits of plants, the size and structure of yields, and the content and yield of Greek oregano essential oil. Natural biostimulants Stimplex (2 dm3 ha–1), Tecamin Max (1.5 dm3 ha–1), and Kendal
(1 dm3 ha–1) were used in the study. The results demonstrated positive effects of the foliar application of the biostimulants on the morphological, performance, and quality parameters of Greek oregano. The most effective treatment was the application of the biostimulant containing extracts of Ascophyllum nodosum algae (Stimplex), followed by the preparation containing amino acids (Tecamin Max). They increased the plant growth rate, the number of lateral branches, and the raw material yield and had a positive effect on the content of essential oil. The size and quality of the Greek oregano yield also depended on the age of the plants and varied between the study years. Higher raw material and oil yields were obtained from two-year plantations. The drought in 2022 limited plant growth and resulted in a lower yield; nevertheless, the essential oil content in the herb increased in these conditions..
Bibliografia
- Alekseeva M., Zagorcheva T., Atanassov I., Rusanov K., 2020. Origanum vulgare L. – a review on genetic diversity, cultivation, biological activities, and perspectives for molecular breeding. Bulg. J. Agric. Sci. 26, 1183–1197.
- Abdali R., Rahimi A., Siavash Moghaddam S., Heydarzadeh S., Arena C., Vitale E., Zamanian M., 2023. The role of stress modifier biostimulants on adaptive strategy of oregano plant for incre-asing productivity under water shortage. Plants 12(24), 4117. https://doi.org/10.3390/plants12244117
- Alvarez I.Z., Ahmed M., McSorley G., Dunlop M., Lucas I., Hu Y., 2024. An overview of biosti-mulant activity and plant responses under abiotic and biotic stress conditions. Syst. Microbiol. Biomanuf. 4(1), 39–55. https://doi.org/10.1007/s43393-023-00182-3
- Amato G., Cardone L., Cicco N., Denora M., Perniola M., Casiello D., Candido V., 2024. Morphological traits yield antioxidant activity and essential oil composition of oregano as affected by biostimulant foliar applications. Ind. Crop. Prod. 22, 119702. https://doi.org/10.1016/j.indcrop.2024.119702
- Azizi A., Yan F., Honermeier B., 2009. Herbage yield, essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and ni-trogen supply. Ind. Crop. Prod. 29, 554–561. https://doi.org/10.1016/j.indcrop.2008.11.001
- Bajguz A., Piotrowska-Niczyporuk A., 2023. Biosynthetic pathways of hormones in plants. Meta-bolites 13(8), 884. https://doi.org/10.3390/metabo13080884
- Baltazar M., Correia S., Guinan K.J., Sujeeth N., Bragança R., Gonçalves B., 2021. Recent advan-ces in the molecular effects of biostimulants in plants: An overview. Biomolecules 11(8), 1096. https://doi.org/10.3390/biom11081096
- Baranauskiene R., Venskutonis P.R., Dambrauskienie E., Viškelis P., 2013. Harvesting time influ-ences the yield and oil composition of Origanum vulgare. ssp. vulgare and ssp. hirtum. Ind. Crops Prod. 49, 43–51. https://doi.org/10.1016/j.indcrop.2013.04.024
- Bell J.C., Bound S.A., Buntain M., 2022. Biostimulants in agricultural and horticultural production. Hortic. Rev. 49, 35–95. https://doi.org/10.1002/9781119851981.ch2
- Bulgari R., Cocetta G., Trivellini A., Vernieri P., Ferrante A., 2015. Biostimulants and crop respon-ses: A review. Biol. Agric. Hort. 31, 1–17. https://doi.org/10.1080/01448765.2014.964649
- Calvo P., Nelson L., Kloepper J.W., 2014. Agricultural uses of plant biostimulants. Plant Soil. 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8
- Chishti S., Kaloo Z.A., Sultan P., 2013. Medicinal importance of genus Origanum: A review. J. Pharmacogn. Phytother. 5, 170–177. https://doi.org/10.5897/JPP2013.0285
- Chitu V., Chitu E., Ancu I., Mladin P., Nicolae S., 2012. Foliar nutrients impact on fruit quality an yield of highbush blueberry. Fruit Grow. Res. XXVIII, 112–117.
- De Saeger J., Van Praet S., Vereecke D., Park J., Jacques S., Han T., Depuydt S., 2020. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J. Appl. Phycol. 32(1), 573–597. https://doi.org/10.1007/s10811-019-01903-9
- Dordas C.A., 2009. Foliar application of calcium and magnesium improves growth. yield. and es-sential oil yield of oregano (Origanum vulgare ssp. hirtum). Ind. Crops Prod. 29, 599–608. https://doi.org/10.1016/j.indcrop.2008.11.004
- Drobek M., Frąc M., Cybulska J., 2019. Plant biostimulants: The importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – A review. Agronomy 9, 335. https://doi.org/10.3390/agronomy9060335
- Elansary H.O., Yessoufou K., Shokralla S., Mahmoud E.A., Skalicka-Wozniak K., 2016. Enhan-cing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind. Crops Prod. 92, 50–56. https://doi.org/10.1016/j.indcrop.2016.07.048
- Euro+Med, 2024. Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/ [access:18.09.2024].
- Farmakopea Polska XI, 2017. PTF, Warszawa.
- Farruggia D., Di Miceli G., Licata M., Urso G., Leto C., Novak J., 2024a. Seaweed extract and fulvic acid application affect the biomass performance. the essential oil yield and composition of Sicilian oregano grown in an organic agricultural system. Ind. Crops Prod. 222, 119790. https://doi.org/10.1016/j.indcrop.2024.119790
- Farruggia D., Tortorici N., Iacuzzi N., Alaimo F., Leto C., Tuttolomondo T., 2024b. Biostimulants Improve plant performance of rosemary growth in agricultural organic system. Agronomy 14(1), 158. https://doi.org/10.3390/agronomy14010158
- Farruggia D., Di Miceli G., Licata M., Leto C., Salamone F., Novak J., 2024c. Foliar application of various biostimulants produces contrasting response on yield. essential oil and chemical pro-perties of organically grown sage (Salvia officinalis L.). Front. Plant Sci. 15, 1397489. https://doi.org/10.3389/fpls.2024.1397489
- Giannoulis K.D., Kamvoukou C.A., Gougoulias N., Wogiatzi E., 2020. Irrigation and nitrogen application affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition. Ind. Crops Prod. 150, 112392. https://doi.org/10.1016/j.indcrop.2020.112392
- Gonceariuc M., Muntean M.V., Butnaraş V., Duda M.M., Benea A., Jelezneac T., Botnarenco P., 2021. Quality variation of the Moldovan Origanum vulgare L. ssp. vulgare L. and Origanum vulgare L. ssp. hirtum (Link) Ietsw. Varieties in Drought Conditions. Agriculture 11(12), 1211. https://doi.org/10.3390/agriculture11121211
- Grevsen K., Frette XC., Christensen L.P., 2009. Content and composition of volatile terpens, flavo-noids and phenolic acids in Greek oregano (Origanum vulgare L. ssp. hirtum) at different development stages during cultivation in cool temperate climate. Eur. J. Hort. Sci. 74(5), 193–220.
- Gutiérrez-Grijalva E.P., Picos-Salas M.A., Leyva-López N., Criollo-Mendoza M.S., Vazquez-Olivo G., Heredia J.B., 2017. Flavonoids and phenolic acids from oregano: Occurrence, bio-logical activity and health benefits. Plants 7, 2. https://doi.org/10.3390/plants7010002
- Jafari Khorsand G., Morshedloo M.R, Mumivand H., Emami Bistgani Z., Maggi F., Khademi A., 2022. Natural diversity in phenolic components and antioxidant properties of oregano (Origa-num vulgare L.) accessions, grown under the same conditions. Sci. Rep. 12, 5813. https://doi.org/10.1038/s41598-022-09742-4
- du Jardin P., 2015. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
- Jiang Y., Yue Y., Wang Z., Lu C., Yin Z., Li Y., Ding X., 2024. Plant Biostimulant as an Envi-ronmentally Friendly Alternative to Modern Agriculture. J. Agric. Food Chem. 72(10), 5107–5121. https://doi.org/10.1021/acs.jafc.3c09074
- Jaiswal A., Verma M., Pandey S., Chitnavis S., Pathak R., Shah K., Chauhan D.N., Chauhan N.S., 2024. Health benefits of oregano extract. in plant-based bioactive compounds and food ingre-dients. Apple Academic Press. Palm Bay, FL, USA, 271–284.
- Johnson R., Joel J.M., Puthur J.T., 2024. Biostimulants: The futuristic sustainable approach for alleviating crop productivity and abiotic stress tolerance. J. Plant Growth Regul. 43, 659–674. https://doi.org/10.1007/s00344-023-11144-3
- Jayaraman J., Norrie J., Punja Z.K., 2011. Commercial extract from the brown seaweed Ascophyl-lum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol. 23, 353–361. https://doi.org/10.1007/s10811-010-9547-1
- Karamanos A., Sotiropoulou D., 2013. Field study of nitrogen application on Greek oregano (Ori-ganum vulgare ssp. hirtum (Link) Ietswaart) essential oil during two cultivation seasons. Ind. Crops Prod. 46, 246–252. https://doi.org/10.1016/j.indcrop.2013.01.021
- Kawade K., Tabeta H., Ferjani A., Hirai M.Y., 2023. The roles of functional amino acids in plant growth and development. Plant Cell Physiol. 64(12), 1482–1493. https://doi.org/10.1093/pcp/pcad071
- Kokkini S., Karousou R., Vokou D., 1994. Pattern of geographic variations of Origanum vulgare trichomes and essential oil content in Greece. Biochem. Syst. Ecol. 22(5), 517–528. https://doi.org/10.1016/0305-1978(94)90046-9
- Kosakowska O., Czupa W., 2018. Morphological and chemical variability of common oregano (Origanum vulgare L. subsp. vulgare) occurring in eastern Poland. Herba Pol. 64, 11–21. https://doi.org/10.2478/hepo-2018-0001
- Kosakowska O., Węglarz Z., Bączek K., 2019. Yield and quality of ‘Greek oregano’ (Origanum vulgare L. subsp. hirtum) herb from organic production system in temperate climate. Ind. Crops Prod. 141, 111782. https://doi.org/10.1016/j.indcrop.2019.111782
- Kosakowska O., Węglarz Z., Pióro-Jabrucka E., Przybył J.L., Kraśniewska, K., Gniewosz M., Bączek K., 2021. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common orega-no (O. vulgare L. subsp. vulgare). Molecules 26(4), 988. https://doi.org/10.3390/molecules26040988
- Król B., Kiełtyka-Dadasiewicz A., 2019. Effectiveness of foliar fertilizers in integrated crop produc-tion of thyme (Thymus vulgaris L.). Agron. Sci. 74(2), 15–23. http://dx.doi.org/10.24326/as.2019.2.2
- Król B., Kołodziej B., Kędzia B., Hołderna-Kędzia E., Sugier D., Luchowska K., 2019. Date of harvesting affects yields and quality of Origanum vulgare ssp. hirtum (Link) Ietswaart. J. Sci. Food Agric. 99(12), 5432–5443. https://doi.org/10.1002/jsfa.9805
- Król B., Sęczyk Ł., Kołodziej B., Paszko T., 2020. Biomass production, active substance content, and bioaccessibility of Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) follo-wing the application of nitrogen. Ind. Crops Prod. 148, 112271. https://doi.org/10.1016/j.indcrop.2020.112271
- Król B., 2023. Ocena efektów stosowania biostymulatorów w integrowanej uprawie majeranku ogrodowego (Origanum majorana L.) [Evaluation of biostimulants application in integrated crop production of sweet marjoram (Origanum majorana L.)]. Agron. Sci. 78(4), 115–126. https://doi.org/10.24326/as.2023.5271
- Kumari S., Sehrawat K.D., Phogat D., Sehrawat A.R., Chaudhary R., Sushkova S.N., Voloshina M.S., Rajput V.D., Shmaraeva A.N., Marc R.A., Shende S.S., 2023. Ascophyllum nodosum (L.) Le Jolis, a pivotal biostimulant toward sustainable agriculture: A comprehensive review. Agriculture 13(6), 1179. https://doi.org/10.3390/agriculture13061179
- Kyriakos D., Giannoulis Ch.A. Kamvoukou N.G., Wogiatzi E., 2020. Irrigation and nitrogen appli-cation affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition, Ind. Crops Prod. 150, 112392. https://doi.org/10.1016/j.indcrop.2020.112392
- Laftouhi A., Eloutassi N., Ech-Chihbi E., Rais Z., Abdellaoui A., Taleb A., Taleb M., 2023. The impact of environmental stress on the secondary metabolites and the chemical compositions of the essential oils from some medicinal plants used as food supplements. Sustainability 15(10), 7842. https://doi.org/10.3390/su15107842
- Le Mire G., Nguyen M. L., Fassotte B., du Jardin P., Verheggen F., Delaplace P., Jijakli M.H., 2016. Implementing plant biostimulants and biocontrol strategies in the agroecological mana-gement of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 299–313. https://doi.org/10.25518/1780-4507.12717
- Lukas B., Schmiderer C., Novak J., 2015. Essential oil diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry 119, 32–40. https://doi.org/10.1016/j.phytochem.2015.09.008
- Majkowska-Gadomska J., Jadwisieńczak K., Francke A., Kaliniewicz Z., 2022. Effect of biostimu-lants on the yield and quality of selected herbs. Appl. Sci. 12, 1500. https://doi.org/
- 10.3390/app12031500
- Mandal S., Anand U., López-Bucio J., Kumar M., Lal M. K., Tiwari R. K., Dey A., 2023. Biosti-mulants and environmental stress mitigation in crops: A novel and emerging approach for agri-cultural sustainability under climate change. Environ. Res. 233, 116357. https://doi.org/
- 10.1016/j.envres.2023.116357
- Market Analysis Report, 2023. Biostimulants market size, share & trends analysis report by active ingredients (acid based, microbial), by crop type, by application (foliar, soil treatment), by re-gion, and segment forecasts, 2023–2030. www.grandviewresearch.com/industry-analysis/biostimulants-market [access: 28.09.2024].
- Marhoon I.A., Abbas M.K., 2015. Effect of foliar application of seaweed extract and amino acids on some vegetative and anatomical characters of two sweet pepper (Capsicum annuum L.) cul-tivars. Int. J. Res. Stud. Agric. Sci. 1, 35–44.
- Mehrabi S., Mehrafarin A., Badi H.N., 2013. Clarifying the role of methanol and amino acids ap-plication on savory (Satureja hortensis L.). Ann. Biol. Res. 4(4), 190–195.
- Mehrafarin A., Qavami N., Tahmasebi Z., Naghdi Badi H., Abdossi V., Seif Sahandi M., 2015. Phytochemical and morpho-physiological responses of lemon balm (Melissa officinalis L.) to biostimulants application. J. Med. Plants. 14(55), 29–42.
- Mezeyova I., Fabianova J., Secanska K., 2022. Influence of amino acid-based stimulants on selec-ted quantitative and qualitative parameters in basil (Ocimum basilicum). J. Int. Sci. Publ., Agric. Food 10, 391–399. https://www.scientific-publications.net/en/article/1002495/
- Milos M., Mastelic J., Jerkovic I., 2000. Chemical composition and antioxidant effect of glycosidi-cally bound volatile compounds from Oregano (Origanum vulgare L. ssp. hirtum). Food Chem. 71(1), 79–83. https://doi.org/10.1016/S0308-8146(00)00144-8
- Morshedloo M.R., Mumivend H., Craker L.E., Maggi F., 2017. Chemical composition and antioxi-dant activity of essential oils in Origanum vulgare subsp. gracile at different phonological sta-ges and plant parts. J. Food. Process. Preserv. 42(2), 1–8. https://doi.org/10.1111/
- jfpp.13516
- Morshedloo M.R., Salami S.A., Nazeri V., Maggi F., Craker L., 2018. Essential oil profile of ore-gano (Origanum vulgare L.) populations grown under similar soil and climate conditions. Ind. Crops Prod. 119, 183–190. https://doi.org/10.1016/j.indcrop.2018.03.049
- Nassar M.A., EL-Kobisy O.S., Shaaban S.A., Abdelwahab H.M., 2020. Seaweed extract enhan-cing growth. fresh herb and essential oil of sweet marjoram (Origanum majorana L.). Plant Arch, 20. Supp.1. 3094–3101.
- Ninou E., Paschalidis K., Mylonas I., 2017. Essential oil responses to water stress in Greek orega-no populations. J. Essent. Oil Bear. Plants 20(1), 12–23. https://doi.org/10.1080/
- 0972060X.2016.1264278
- Ninou E., Cook C.M., Papathanasiou F., Aschonitis V., Avdikos I., Tsivelikas A.L., Mylonas I., 2021. Nitrogen effects on the essential oil and biomass production of field grown Greek ore-gano (Origanum vulgare subsp. hirtum) populations. Agronomy 11(9), 1722. https://doi.org/10.3390/agronomy11091722
- Nurzyńska-Wierdak R., Bogucka-Kocka A., Sowa I., Szymczak G., 2012. The composition of essential oil from three ecotypes of Origanum vulgare L. ssp. vulgare cultivated in Poland. Farmacia 2(60), 571–577.
- Omrani M., Ghasemi M., Modarresi M., Salamon I., 2023. Alternations in physiological and phy-tochemical parameters of German chamomile (Matricaria chamomilla L.) varieties in response to amino acid fertilizer and plasma activated-water treatments. Horticulturae 9(8), 857. https://doi.org/10.3390/horticulturae9080857
- Panagiotidou C., Bouloumpasi E., Irakli M., Chatzopoulou P., 2024. Characterization of natural bioactive compounds from Greek oregano accessions subjected to advanced extraction tech-niques. Plants 13(21), 3087. https://doi.org/10.3390/plants13213087
- Paradiković N., Ćosić J., Baličević R., Vinković T., Vrandečić K., Ravlić M., 2012. Utjecaj kemij-skih bioloških mjera na rast i razvoj presadnica paprika i suzbijanje fitopatogenih gljiva Pythium ultimum i Rhizoctonia solani. Glas. Zašt. Bilja 35(3) 50–56.
- Paradiković N., Teklić T., Zeljković S., Lisjak M., Špoljarević M., 2019. Biostimulants research in some horticultural plant species – A review. Food Energy Secur. e00162. https://doi.org/10.1002/fes3.162
- Pirani H., Ebadi M.T., Rezaei A., 2020. Effect of seaweed fertilizer foliar application on growth parameters, yield, and essential oil content and composition of hyssop (Hyssopus officinalis L.). Iranian J. Med. Aromatic Plants Res. 36(3), 376–389.
- Rahimi A., Mohammadi M.M., Siavash Moghaddam S., Heydarzadeh S., Gitari H., 2022. Effects of stress modifier biostimulants on vegetative growth nutrients and antioxidants contents of garden thyme (Thymus vulgaris L.) under water deficit conditions. J. Plant Growth Regul. 41(5), 2059–2072. https://doi.org/10.1007/s00344-022-10604-6
- Ricci M., Tilbury L., Daridon B., Sukalac K., 2019. General principles to justify plant biostimulant claims. Front Plant Sci. 10, 494. https://doi.org/10.3389/fpls.2019.00494
- Rodriguez-Garcia I., Silva-Espinoza B.A., Ortega-Ramirez L.A., Leyva J.M., Siddiqui M.W., Cruz-Valenzuela M.R., Gonzalez Aguilar G.A., Ayala-Zavala J.F., 2016. Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit. Rev. Food Sci. Nutr. 56(10), 1717–1727. https://doi.org/10.1080/10408398.2013.800832
- Sarrou E., Tsivelika N., Chatzopoulou P., Tsakalids G., Menexes G., Mavromatis A., 2017. Conventional breeding of Greek oregano (Origanum vulgare ssp. hirtum) and development of improved cultivars for yield potential and essential oil quality. Euphytica 213, 104. https://doi.org/10.1007/s10681-017-1889-1
- Shafie F., Bayat H., Aminifard MH. Daghighi S., 2021. Biostimulant effects of seaweed extract and amino acids on growth. antioxidants and nutrient content of yarrow (Achillea millefolium L.) in the field and greenhouse conditions. Commun. Soil Sci. Plant Anal. 52(9), 964–975. https://doi.org/10.1080/00103624.2021.1872596
- Shukla P.S., Mantin E.G., Adil M., Bajpai S., Critchley A.T., Prithiviraj B., 2019. Ascophyllum nodosum – based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 10, 655. https://doi.org/10.3389/fpls.2019.00655
- Singletary K., 2010. Oregano: overview of the literature on health benefits. Nutr. Today 45(3), 129–138. https://doi.org/10.1097/NT.0b013e3181dec789
- Sidhu V., Nandwani D., 2017. Effect of Stimplex® on yield performance of tomato in organic ma-nagement system. Ann. Adv. Agric. Sci. 1(1), 11–15. https://doi.org/10.22606/as.2017.11002
- Skoula M., Harborne J.B., 2002. Taxonomy and chemistry of Origanum. In: S.E. Kintzios (ed.), Oregano: the genera Origanum and Lippia. CRC Press, Taylon & Francis, London UK. 67–108. https://doi.org/10.1201/b12591
- Skoufogianni E., Solomou A.D., Danalatos N.G., 2019. Ecology, cultivation and utilization of the aromatic Greek oregano (Origanum vulgare L.): A review. Not. Bot. Horti Agrobot. Cluj Na-poca 47(3), 545–552. https://doi.org/10.15835/nbha47311296
- Skrypnik L., Maslennikov P., Antipina M., Katserov D., Feduraev P., 2024. Comparative study on the response of hyssop (Hyssopus officinalis L.), salvia (Salvia officinalis L.), and oregano (Origanum vulgare L.) to drought stress under foliar application of selenium. Plants 13(21), 2986. https://doi.org/10.3390/plants13212986
- Sun W., Shahrajabian M. H., Kuang Y., Wang N., 2024. Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants 13(2), 210. https://doi.org/10.3390/plants13020210
- Tawfeeq A., Culham A., Davis F., Reeves M., 2016. Does fertilizer type and method of application cause significant differences in essential oil yield and composition in rosemary (Rosmarinus officinalis L). Ind. Crop. Prod. 88, 17–22. https://doi.org/10.1016/j.indcrop.2016.03.026
- Tibaldi G., Fontana E., Nicola S., 2011. Growing conditions and postharvest management can affect the essential oil of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Ind. Crop Prod. 34, 1516–1522. https://doi.org/10.1016/J.indcrop.2011.05.008
- Węglarz Z., Kosakowska O., Przybył J.L., Pióro-Jabrucka E., Bączek K., 2020. The quality of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vul-gare L. subsp. vulgare) cultivated in the temperate climate of central Europe. Foods 9(11), 1671. https://doi.org/10.3390/foods9111671
- Wozniak E., Blaszczak A., Wiatrak P., Canady M., 2020. Biostimulant mode of action: impact of biostimulant on whole-plant level. In: D. Geelen, L. Xu (eds), Chemical biology of plant bio-stimulants, 205–227. https://doi.org/10.1002/9781119357254.ch8
- Wu Y.T., Lin C.H., 2000. Analysis of cytokinin activity in commercial aqueous seaweed extract. Gartenbauwissenschaft 65, 170–173.
- Veenstra J.P., Johnson J.J., 2019. Oregano (Origanum vulgare) extract for food preservation and improvement in gastrointestinal health. Int. J. Nutr. 3(4), 43. https://doi.org/10.14302/issn.2379-7835.ijn-19-2703
- Velička A., Tarasevičienė Ž., Hallmann E., Kieltyka-Dadasiewicz A., 2022. Impact of foliar applica-tion of amino acids on essential oil content odor profile and flavonoid content of different mint varieties in field conditions. Plants 11(21), 2938. https://doi.org/10.3390/plants11212938
- Vokou D., Kokkini S., Bessiere J.M., 1993. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 21(2), 287–295.
- Zhao Y., 2012. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5(2), 334–338. https://doi.org/10.1093/mp/ssr104
Downloads
Download data is not yet available.
-
ELŻBIETA TURSKA,
GRAŻYNA WIELOGÓRSKA,
SZYMON CZARNOCKI,
Rola międzyplonów ścierniskowych w monokulturowej uprawie pszenicy jarej
,
Agronomy Science: Tom 65 Nr 1 (2010)
-
Natalia A. Lykova,
Anna K. Vilichko,
Dina I. Alexeeva,
Complex diagnostics of crop yield in ecological trials of cereal cultivars
,
Agronomy Science: Tom 59 Nr 4 (2004)
-
DOROTA GAWĘDA,
CEZARY A. KWIATKOWSKI,
Plonowanie pszenicy jarej uprawianej w krótkotrwałej monokulturze w zależności od międzyplonu i sposobu odchwaszczania
,
Agronomy Science: Tom 67 Nr 2 (2012)
-
Leszek Rachoń,
Aneta Bobryk-Mamczarz,
Anna Kiełtyka-Dadasiewicz,
Andrzej Woźniak,
Zbigniew Stojek,
Paulina Zajdel-Stępień,
Plonowanie i jakość wybranych gatunków i odmian pszenicy makaronowej. Cz. I. Plonowanie
,
Agronomy Science: Tom 77 Nr 1 (2022)
-
Feliks Ceglarek,
Danuta Buraczyńska,
Anna Płaza,
Robert Rudziński,
Wpływ udziału komponentów mieszanek bobiku z pszenicą jarą na plon i zawartość związków chemicznych w biomasie mieszanki
,
Agronomy Science: Tom 59 Nr 3 (2004)
-
Cezary Trawczyński,
Oddziaływanie dolistnego dokarmiania nawozami wieloskładnikowymi w formie nanocząsteczek na plon i jakość bulw ziemniaka
,
Agronomy Science: Tom 77 Nr 2 (2022)
-
Włodzimierz Kita,
Stanisław J. Pietr,
Władysław Nowak,
Józef Sowiński,
Wpływ ochrony biologicznej i tradycyjnej na plonowanie i zdrowotność dwóch odmian pszenicy
,
Agronomy Science: Tom 59 Nr 4 (2004)
-
Barbara Sawicka,
Próba poprawy jakości materiału sadzeniakowego ziemniaka poprzez stosowanie minibulw w uprawie polowej
,
Agronomy Science: Tom 59 Nr 3 (2004)
-
LESZEK RACHOŃ,
GRZEGORZ SZUMIŁO,
HALINA MACHAJ,
Wpływ intensywności technologii uprawy na plonowanie różnych genotypów pszenicy ozimej
,
Agronomy Science: Tom 69 Nr 3 (2014)
-
Zdzisław Ciećko,
Andrzej Żołnowski,
Mirosław Wyszkowski,
Plonowanie i zawartość skrobi w bulwach ziemniaka w zależności od nawożenia NPK
,
Agronomy Science: Tom 59 Nr 1 (2004)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.