Abstract
Information on the spatial variability in plant disease is essential for location-based disease management. In the current study, the spatial distribution of tomato early blight disease was ascertained in District Gilgit, GilgitBaltistan, Pakistan. The comprehensive field survey was carried in two growing seasons (2014–2015), whereas in each growing season, 62 tomato fields were surveyed. Based on the distribution of disease, the respective thematic maps (incidence and severity) were prepared using Arc Map 10.1 with spatial analyst function of Arc GIS software by means of the inverse distance weight (IDW) interpolation method. Results indicate that early blight of tomato is spatially distributed in both growing seasons. However, in the first growing season, the disease incidence ranged from 10.22% to 44.16% and during later season 14.03–49.16%, whereas 5.37–16.40% and 6.52–26.94% severity was recorded. Furthermore, this information indicates that higher disease infestation occurred in 2015 in relation to 2014. This information linked to metrological data (temperature, precipitation and relative humidity), seemingly favored the early blight development during the growing period. Seven botanical extracts were tested against pathogen Alternaria solani at different concentrations (4, 6 and 8%). Results revealed that all tested plant extracts showed antifungal activities. However, at 8% concentration of plant extract, Datura starmonium, Berberis orthobotry, Podophyllum emodi and Uretica dioica exhibited >60%, while Peganum harmala, Artemisia maritima and Capparis spinosa <60% antifungal properties. The information generated due to this study could help the tomato growers regarding disease management and selection of resistant cultivars, improving profitability and food security in the Gilgit region.
References
- Abdel-Sayed, M.H.F. (2006). Pathological, physiological and molecular variations among isolates of Alternaria solani the causal of tomato early blight disease. Ph.D. Thesis, Faculty of Agriculture, Cairo University, Egypt, pp. 181.
- Afaq, A., Ihsan Ul, K., Maid, Z. (2014). Prevalence of early blight of tomato and differences among isolates of Alternaria solani in Peshawar division. Asian J. Agric. Biol., 2(4), 263–267.
- Agriculture statistics of Gilgit-Baltistan (2009). Area, production of fruit, vegetables and cereals. Department of Agriculture, Gilgit-Baltistan, Government of Pakistan, pp. 46.
- Agrios, G.N. (2005). Plant pathology, 5th ed. Academic Press Linacre House, Oxford, 343–346.
- AGRISTAT (2013). Pakistan Bureau of Statistics. Government of Pakistan, Islamabad, Unpublished data.
- Year Book of Department of Agricultural Economic Statistical (2006). Ministry of Agriculture and Land Reclamation, Egypt. pp. 83.
- Arunachalam, K.A., Arunachalam, R.S.T, Pandey, H.N. (1997). Dynamics of microbial population during the aggradations phase of selectively logged sub-tropical humid forest in north-eastern India. Trop. Ecol., 38, 333–341.
- Baber, K., Khattak, RA., Hakeem, A. (2000). Physicochemical properties and fertility status of Gilgit soil. J. Agric. Res., 42, 306–312.
- Cerkauskas, R. (2005). Early blight. AVRDC, the world vegetable center. Available: www.avrdc.org
- Derbalah, A.S., El-Mahrouk, M.S, El-Sayed. A.B. (2011). Efficacy and safety of some plant extracts against tomato early blight disease caused by Alternaria solani. Plant Pathol. J., 10(3), 115–121.
- Duru, C.M., Onyedineke, N.E. (2010). In vitro study on the antimicrobial activity and phytochemical analysis of ethonalic extracts of the mesocarp of Voacanga africana. Am. J. Plant Physiol., 5,163–169.
- Ganie, S.A., Ghani, M.Y, Qazi, N. Nayeema, J. Qaisar, A. (2013). Status and symptomatology of early blight (Alternaria solani) of potato (Solanum tuberosum L.) in Kashmir valley. Afr. J. Agric. Res., 8, 5104–5115.
- Goussous, S.J., Abu-El-Samen, F.M., Tahhan, R.A. (2010). Antifungal activity of several medicinal plants extracts against the early blight pathogen (Alternaria solani). Arch. Phytopathol. Plant Prot., 43, 1746–1758.
- He, K., Yang, S., Huang, Z., Qing, L., Sun, X., Li, Z. (2012). Identification and biological characteristics of potato early blight. China Veg., 72–77.
- Hussain, A., Awan, M.S., Ali, S., Khan, A., Morari, F., Ali, S. (2016). Spatial variability of soil micronutrients (Cu, Fe, Zn & Mn) and population dynamic of mycoflora in potato fields of CKNP region Gilgit-Baltistan Pakistan. Pak. J. Agric. Sci., 53(3), 541–550.
- Krishna, P.R., Mahapatra, S.S., Swain, N.C. (2009). Effect of temperature, relative humidity and different bio-agents on spore germination of Alternaria solani causing potato blight in Orissa. J. Plant Prot. Environ., 6, 99–102.
- Latha, P., Anand, T., Ragupathi, N., Prakasam, V., Samiyap-pan, R. (2009). Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biol. Cont., 50, 85–93.
- Manmohan, M.S., Govindaiah (2012). In vitro screening of aqueous plant extracts against Fusarium solani (Mart.) Sacc. Causing root rot in mulberry. Green Farming. Int. J. Appl. Agric. Hortic. Sci., 3(2), 223–225.
- Momel, T.M., Pemezny, K.L. (2006). Florida Plant Disease Management Guide: Tomato. Florida Cooperation Extensive Service, Institute of Food and Agriculture Sciences, Gaineville 32611. Available: http://edis.infas.ufl.edu
- Naik, M.K., Sinha, P. (1997). Epidemiology of early blight of tomato. Aerobiology, 299–303.
- Neeraj, V.S. (2010). Alternaria diseases of vegetable crops and new approaches for its control. Asian J. Biol. Sci., 1(3), 681–692.
- Nelson, M.R., Felix-Gastelum, R., Orum, T.V., Stwoell, L.J., Myers, D.E. (1994). Geographical information systems and geostatistics in the design and validation of regional plant virus management programs. Phytopathology, 84, 898–905.
- Nelson, M.R., Orum, T.V., Jaime-Garcia, R., Nadeem, A. (1999). Applications of geographic information systems and geostatistics in plant disease epidemiology and management. Plant Dis., 83, 308–319.
- Orum, T.V., Bigelow, D.M., Nelson, M.R., Howell, D.R., Cotty, P.J. (1997). Spatial and temporal patterns of Aspergillus flavus strain composition and propagule density in Yuma County, Arizona, soils. Plant Dis., 81, 911–916.
- Ravikumar, M.C., Rajkumar, H.G. (2013). Antifungal activity of plants extracts against Alternaria solani, the causal agent of early blight of tomato. Arch. Phytopathol. Plant Prot., 46(16), 1897–1903. DOI: 10.1080/03235408.2013.780350
- Sallam, M.A., Kamal, A.M. (2012). Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. J. Plant Prot. Sci., 48(2), 74–79.
- Simmsons, E.G. (2007). Alternaria: an identification manual. CBS Biodiversity Series, pp. 379.
- Singh, R.S. (1987). Diseases of vegetable crops. Oxford and IBH Publishing, New Delhi–Bombay–Calcutta, p. 419.
- Taskeen, U.N., Wani, A.H., Mir, R.A. (2010). Anti mycotic activity of plant extracts on the spore germination of some pathogenic fungi. Mycopathology, 8(2), 65–69.
- Taskeen, U.N., Wani, A.H., Mohd, Y.B., Pala, S.A., Mir, R.A. (2011). In vitro inhibitory effect of fungicides and botanicals on mycelia growth and spore germination of Fusarium oxysporum. J. Biopesticides, 4(1), 53–56.
- Tewari, R., Vishunavat, K. (2012). Management of early blight (Alternaria solani) in tomato by integration of fungicides and cultural practices. Int. J. Plant Prot., 5, 201–206.
- Thobhunluepop, P. (2009). Implementation of biofungicides and seed treatment in organic rice cv.KDML 105 farming. Pak. J. Biol. Sci., 12, 1119–1126.
- Vieira, B.S. (2004). Alternaria euphorbiicola como micoherbicida para leiteiro (Euphorbia heterophylla): produção massal e integração com herbicidas químicos. Tese de Doutorado. Viçosa MG. Universidade Federal de Viçosa.
Downloads
Download data is not yet available.
-
Hanna Berniak,
PARTIAL CHARACTERIZATION OF Cherry leaf roll virus (CLRV) ISOLATES INFECTING Sambucus spp. PLANTS IN POLAND
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 15 No. 2 (2016)
-
Gölgen Bahar Öztekin,
Yüksel Tüzel,
EFFECTS OF OXYFERTIGATION AND PLANT GROWTH PROMOTING RHIZOBACTERIA ON GREENHOUSE LETTUCE GROWN IN PERLITE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 19 No. 1 (2020)
-
Yusuf Savsatli,
Arzu Karatas,
Effects of grafting on some phytochemical traits and elemental composition in bitter gourd (Momordica charantia L.)
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 20 No. 6 (2021)
-
Halil İbrahim Öztürk,
Hüseyin Bulut,
Atilla Dursun,
Examination of morphological and molecular changes in tomato (Solanum lycopersicum L.) seedlings with the application of tebuconazole
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 1 (2022)
-
Zahra Karimian,
Leila Samiei,
Jafar Nabati,
EVALUATION OF DROUGHT RESISTANCE IN Nitraria schoberi AS A NATIVE PLANT BY IRRIGATION INTERVALS FOR APPLYING IN ARID URBAN LANDSCAPE
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 6 (2017)
-
Alejandro Velasco-Ramírez,
Marcos Villegas-Lozano,
Ana Paulina Velasco-Ramírez,
Rosalba Mireya Hernández-Herrera,
Armando Rafael Hernández-Pérez,
María Luisa García-Sahagún,
Martha Isabel Torres-Morán,
EFFECT OF DAMINOZIDE ON THE GROWTH AND FLOWERING OF Eustoma grandiflorum PROPAGATED IN POTTED
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 21 No. 3 (2022)
-
Józef Nurzyński,
Zbigniew Jarosz,
THE NUTRIENT CONTENT IN SUBSTRATES AND LEAVES OF GREENHOUSE TOMATO
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 11 No. 6 (2012)
-
Sanja Predrag Živković,
Tanja Predrag Vasić,
Jordan Paun Marković,
Darko Radovan Jevremović,
Susceptibility of grapevine cultivars to Eutypa lata in Serbia
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 22 No. 4 (2023)
-
Cezary A. Kwiatkowski,
YIELD AND QUALITY OF CHAMOMILE (Chamomilla recutita (L.) Rausch.) RAW MATERIAL DEPENDING ON SELECTED FOLIAR SPRAYS AND PLANT SPACING
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 14 No. 1 (2015)
-
Agnieszka Jamiołkowska,
Andrzej Księżniak,
Beata Hetman,
Marek Kopacki,
Barbara Skwaryło-Bednarz,
Anna Gałązka,
Ali Hamood Thanoon,
INTERACTIONS OF ARBUSCULAR MYCORRHIZAL FUNGI WITH PLANTS AND SOIL MICROFLORA
,
Acta Scientiarum Polonorum Hortorum Cultus: Vol. 16 No. 5 (2017)
<< < 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.