Skip to main navigation menu Skip to main content Skip to site footer

Vol. 20 No. 6 (2021)

Articles

The influence of plant essential oils on in vitro growth of Pectobacterium and Dickeya spp. bacteria

DOI: https://doi.org/10.24326/asphc.2021.6.3
Submitted: May 20, 2020
Published: 2021-12-09

Abstract

 The activity of essential oils from Eucalyptus globulus, Pinus silvestris, Lavandula angustifolia, Juniperus virginiana, Rosmarinus officinalis and Citrus paradise against the soft-rot pathogens Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, Pectobacterium parmentieri and Dickeya solani was determined in vitro. The antibacterial activity of the essential oils will be evaluated using the disk-diffusion method by Kirby-Bauer [Bauer et al. 1966]. It was found that all the presented essential oils varied in antimicrobial activity against the four bacterial strains. No differences in the influence of streptomycin on inhibition of growth of the four bacterial strains were observed. Among six tested plants, essential oils from P. sylvestris had the strongest inhibitory effect on the growth of soft rot bacteria from Pectobacterium genus. This paper constitute the first report on the activity of the essential oils obtained from J. virginiana against soft rot bacteria. They are also the first report on the activity of the essential oils obtained from E. globulus, P. silvestris, L. angustifolia and C. paradisi against P. atrosepticum, P. parmentieri and D. solani as well as on the activity of the R. officinalis essential oils against P. atrosepticum and P. parmentieri.

References

  1. Adams, R.P. (1991). Cedar wood oil – analyses and properties. In: Essential oils and waxes, Linskens, H.F., Jackson, J.F. (eds). Springer, Berlin, Heidelberg, 159–173.
  2. Adaszyńska-Skwierzyńska, M., Swarcewicz, M. (2014). Skład chemiczny i aktywność biologiczna lawendy lekarskiej. Wiad. Chem. 68(11–12), 1073–1092.
  3. Alamshahi, L., Hosseini, M., Nezhad, M.H., Panjehkeh, N., Sabbagh, S.K., Sadri, S. (2010). Antibacterial effects of some essential oils on the growth of Pectobacterium carotovorum subsp. carotovorum. The 8th International Symposium on Biocontrol and Biotechnology 4th to 6th October 2010. Pattaya, Chonburi, Thailand, 206–212.
  4. Bachheti, R.K. (2015). Chemical composition and antibacterial activity of the essential oil from the leaves of Eucalyptus globulus collected from Haramaya University, Ethiopia. Pharma Chem., 7, 209–214.
  5. Badawy, M.E.I., Abdelgaleil, S.A.M. (2014). Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Ind. Crops Prod., 52, 776–782.
  6. Barzic, M.R., Com, E. (2012). Proteins involved in the interaction of potato tubers with Pectobacterium atrosepticum: a proteomic approach to understanding partial resistance. J. Phytopathol., 160, 561–575.
  7. Bauer, A.W, Kirby, W.M., Sherris, J.C., Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol., 45, 493–496.
  8. Bouhdid, S., Skali, S.N., Idaomar, M., Zhiri, A., Baudoux, D., Amensour, M., Abrini, J. (2008). Antibacterial and antioxidant activities of Origanum compactum essential oil. Afr. J. Biotechnol., 7, 1563–1570.
  9. Churata-Oroya, D.E., Ramos-Perfecto, D., Moromi-Nakata, H., Martínez-Cadillo, E., Castro-Luna, A., Garcia-de-la-Guarda, R. (2016). Efecto antifúngico del Citrus paradisi “toronja” sobre cepas de Candida albicans aisladas de pacientes con estomatitis subprotésica. Rev. Estomatol. Hered., 26, 78–84.
  10. Czerwińska, E., Szparaga, A. (2015). Antibacterial and antifungal activity of plant extracts. Ann. Set Environ. Prot., 17, 209–229.
  11. Damjanović-Vratnica, B., Đakov, T., Šuković, D., Damjanović, J. (2011). Antimicrobial effect of essential oil isolated from Eucalyptus globules Labill. from Montenegro. Czech J. Food Sci., 29, 277–284.
  12. Duarte, V., Boer, S.H., Ward, L.J. de, Oliveira, M.C. de (2004). Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol., 96, 535–545.
  13. Elansary, H.O., Samir, A.M. Abdelgaleil, S.A.M., Mahmoud, E.A., Kowiyou Yessoufou, K., Khalid Elhindi, K., Salah El-Hendawy, S. (2018). Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement Altern. Med., 18, 214–218.
  14. Fekih, N., Allali, H., Merghache, S., Chaïb, F., Merghache, D., El Amine, M., Djabou, N., Muselli, A., Tabti, B., Costa, J. (2014). Chemical composition and antibacterial activity of Pinus halepensis Miller growing in west northern of Algeria. Asian Pac. J. Trop. Dis., 4, 97–103.
  15. Fernández, R.M.M., Corzo, L.M., Sánchez, P.Y., Brito, D., Montes de Oca, R., Martínez, Y. Pino, P.O. (2014). Actividad antibacteriana de aceites esenciales sobre Pectobacterium carotovorum subsp. carotovorum. Rev. Prot. Veg., 29(3), 197–203.
  16. Gakuubi, M.M., Wagacha, J.M., Dossaji, S.F., Wanzala, W. (2016). Chemical composition of essential oils of Tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. Int. J. Microbiol., 1–9. https://doi.org/10.1155/2016/7352509
  17. Gardan, L., Couy, C., Christen, R., Galan, J.E. (2003). Evaluation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Inter. J. Syst. Evol. Microbiol., 53, 381–391.
  18. Goto, M. (1992). Fundamentals of bacterial plant pathogeny. Acad. Press, New York, 35–40.
  19. Hădărugă, N.G., Branic, A.G., Hădărugă, D.I., Alexandra Gruia, A., Pleșa, C., Costescu, C., Ardelean, A., Alfa Xenia Lupea, A.X. (2011). Comparative study of Juniperus communis and Juniperus virginiana essential oils: TLC and GC analysis. J. Planar Chrom., 24, 130–135.
  20. Hołderna-Kędzia, E. (2010). Działanie substancji olejkowych na bakterie i grzyby. Post. Fitoter., 1, 3–8.
  21. İşcan, G., Ki̇ri̇mer, N.M.K., Fati̇h Demi̇rci̇, F. (2002). Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food, 50, 3943–3946.
  22. Jamshidi, S., Adargani, S. (2016). Antibacterial potential of purple coneflower extracts and essential oils against some plant-related bacteria. Agroecol. J., 12 (2), 65–72.
  23. Kamal, G.M., Anwar, F., Hussain, A.I., Sarri, N., Ashraf, M. (2011). Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int. Food Res. J., 18, 1275–1282.
  24. Kędzia, A., Kędzia, A.W. (2009). Działanie in vitro olejku sosnowego wobec bakterii beztlenowych wyizolowanych z jamy ustnej i dróg oddechowych. Post. Fitoter., 1, 19–23.
  25. Kokoskova, B.D. Pouvova, D., Pavela, R. (2011). Effectivness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. J. Plant Pathol., 93, 133–139.
  26. Lebecka, R. (2017). Screening for potato resistance to blackleg and soft rot. Plant Breed. Seed Sci., 75, 97–104.
  27. Mehrorosh, H., Gavanji, S., Larki, B., Mohammadi, M.D., Karbasiun, A., Bakhtari, A., Hashemzadeh, F., Mojiri, A. (2014). Essential oil composition and antimicrobial screening of some Iranian herbal plants on Pectobacterium carotovorum Global NEST J.,16 (2), 240–250.
  28. Mikiciński, A., Sobiczewski, P., Berczyński, S. (2012). Efficacy of fungicides and essential oils against bac-terial diseses of fruit trees. J. Plant Prot. Res., 52, 467–471.
  29. Nezhad, M.H., Alamshahi, L., Panjehkeh, N. (2012). Biocontrol efficiency of medicinal plants against Pectobacterium carotovorum, Ralstonia solanacearum and Escherichia coli. The Open Conf. Proc. J., 3 (Suppl 1-M8), 46–51.
  30. Nurzyńska-Wierdak, R. (2015). Aktywność biologiczna olejków eterycznych roślin z rodziny Pinaceae. Terapeutyczne właściwości olejków eterycznych. Ann. UMCS, sec. EEE Horticultura, 25(3), 19–31.
  31. Okla, M.K., Alamri, S.A., Salem, M.Z.M., Al., I.H.M., Behiry, S.I., Nasser, R.A., Alaraidh, I.A., Al-Ghtani, S.M., Soufan, W. (2019). Yield, phytochemical constituents, and antibacterial activity of essential oils from the leaves/twigs, branches, branch wood, and branch bark of sour orange (Citrus aurantium L.). Processes, 7, 2–15.
  32. Okunowo, W.O., Oyedeji, O., Afolabi, L.O., Matanmi, E. (2013). Essential oil of grape fruit (Citrus paradisi) peels and its antimicrobial activities. Am. J. Plant Sci., 4, 1–9.
  33. Papadopoulos, Ch.J., Carson, Ch.F., Hammer, K.A., Riley, T.V. (2006). Susceptibility of pseudomonads to Melaleuca alternifolia (tea tree) oil and components. J. Antimicrob. Chemother., 58, 449–451.
  34. Popović, T., Milićević, Z., Orgo, V., Kostić, I., Radović, V., Jelušić, A., Krnjajić, S. (2018). A preliminary study of antibacterial activity of thirty essential oils against several important plant pathogenic bacteria. Pestic. Phytomed. (Belgade), 33(3–4), 185–195.
  35. Prusinowska, R., Smigielski, K.B. (2014). Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L.). A review. Herba Pol., 60(2), 56–66.
  36. Salem, M.Z.M., Elansary, H.O., Ali, H.M., El-Settawy, A.A., Elshikh, M.S., Abdel-Salam, E.M., Skalicka-Woźniak, K. (2018). Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. BMC Comp. Altern. Med., 18, 23–30.
  37. Samson, R., Legendre, J.B., Christen, R., Saux, M.F.L., Achouak, W., Gardan, L. (2005). Transfer of Pectobacterium chrysanthemi and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Inter. J. Syst. Evol. Microbiol., 55, 1415–1427. https://doi.org/10.1099/ijs.0.02791-0
  38. Sledz, W., Jafra, S., Waleron, M., Toth, I.K., Hyman, L.J., Perombelon, M.C.M., Łojkowska, E. (1998). Identification of pectolytic erwinias isolated from infected potato plants in Poland. Proceedings 7th International Conference of Plant Pathology, Edinburgh, 9-16th August 1998, 10-12.
  39. Sławiak, M., Łojkowska ,E., Wolf, J. M. van der .(2009). First report of bacterial soft rot on potato caused by Dickeya sp. (syn. Erwinia chrysanthemi) in Poland. Plant Path., 58, 794.
  40. Smigielski, K., Raj, A., Krosowiak, K., Gruska, R. (2009.) Chemical composition of the essential oil of Lavandula angustifolia cultivated in Poland. J. Ess. Oil Res., 12, 338–347.
  41. Stewart, Ch.D., Jones, Ch.D., William, N. Setzer, W.N. (2014). Essential oil compositions of Juniperus virginiana and Pinus virginiana, two important trees in Cherokee traditional medicine. Am. J. Ess. Oils Nat. Prod., 2, 17–24.
  42. Tarakemeh, A., Abutalebi, A. (2012). Effect of drying method on the essential oil quantity of basil (Ocimum basilicum L.). J. Ess. Oil Bear. Plants, 15, 503–505.
  43. Tomescu, A., Rus, C., Pop, G., Alexa, E., Sumălan, R., Copolovici, D., Negrea, M. (2015). Chemical composition of Lavandula angustifolia L. and Rosmarinus officinalis L. essential oils cultivated in West Romania. Res. J. Agric. Sci., 47 (3), 246–253.
  44. Toth, I.K., van der Wolf, J.M., Saddler, G.S., Łojkowska, E., Hélias, V., Pirhonen, M., Tsror, L., Elphinstone, J.G. (2011). Dickeya species: an emerging problem for potato production in Europe. Plant Pathol., 60(3), 385–399.
  45. Vasinauskiene, M., Radušiene, J., Zittikaité, I., Surviliené, E. (2006). Antribacterial activities oils from aromatic and medicinal plants against growth of phytopathogenic bacteria. Agron. Res., 4(special issue), 437–440.
  46. Verma, R.S., Rahman, Lu, Chanotiya, C.S., Verma, R.K., Singh, A., Yadav, A., Chauhan A., Yadav A.K., Singh A.K. (2009). Essential oil composition of Thymus serpyllum cultivated in the Kumaon region of western Himalaya, India. Nat. Prod. Commun., 4, 987–988.
  47. Viturro, I., Molina, A.C., Heit, C.I. (2003). Volatile components of Eucalyptus globulus Labill ssp. bicostata from Jujuy, Argentina. J. Ess. Oil Res., 15, 206–208.
  48. Wójtowicz, A., Mrówczyński, M. (2017). Metodyka integrowanej ochrony ziemniaka dla doradców. Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Poznań, 130–136.
  49. Zimnoch-Guzowska, E., Marczewski, W., Lebecka, R., Flis, B, Schäfer-Pregl, R., Salamini, F., Gebhardt, C. (2000). QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RLFP, and resistance-gene-like markers. Crop Sci., 40, 1156‒1167.
  50. Yanmis, D., Gormez, A., Bozari, S., Orhan, F., Gulluce, M., Agar, G., Sahin, F. (2012). Microbes in applied research. In: Current advances and challenges, Mendez-Vilas, A. (ed.). Word Scientific Publishing, Singapore, 531–535.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.