Skip to main navigation menu Skip to main content Skip to site footer

Vol. 13 No. 3 (2014)

Articles

PHYSIOLOGICAL REACTION OF Phalaenopsis × hybridum ‘Innocence’ ON Pseudococcus longispinus (Targoni Tozetti) FEEDING

Submitted: November 26, 2020
Published: 2014-06-30

Abstract

The physiological response of Phalaenopsis × hybridum ‘Innocence’ to biotic stress caused by Pseudococcus longispinus feeding was investigated. The condition of the cytoplasmic membranes expressed by a value of electrolyte outflow (EL) and TBARS and the activity of antioxidative system enzymes: catalase and peroxidase, and the amount of non-enzymatic antioxidant – proline, were determined. The changes in all the analyzed physiological parameters depended on the duration of the pest feeding. The outflow of electrolytes, TBARS content and catalase activity was the highest in the first period of the experiment (after 24-hour of mealybug feeding). Significant increase of peroxidase activity and proline content was noted after 7 days of insects feeding. The values of all analyzed parameters (except EL) demonstrated a decreasing tendency after 14 days of P. longispinus feeding. The observed reaction of P. hybridum ‘Innocence’ testifies to mechanisms triggered with the aim of neutralizing the effects of biotic stress and enabling the normal functioning of the cells in the orchid plants colonized by longtailed mealybug.

References

Allison S.D., Schultz J.C., 2004. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.). J. Chem. Ecol. 30, 7, 1363–1379.
Aslanturk A., Kalender S., Uzunhisarcikli M., Kalender Y., 2011. Effects of methidathion on antioxidant enzyme activities and malondialdehyde level in midgut tissues of Lymantria dispar (Lepidoptera) larvae. J. Entomol. Res. Soc. 13, 3, 27–38.
Bates L.S., Waldren R.R., Teare I.D., 1973. Rapid determination of free proline or water-stress studies. Plant Soil 39, 205–207.
Bolwell G.P., Bindschedler L.V., Blee K.A., Butt V.S., Davies D.R., Gardner S.L., Gerrish C., Minibayeva F., 2002. The apoplastic oxidative burst in response to biotic stress in plants: a tree-component system. J. Exp. Bot. 53, 1367–1376.
Chance B., Meahly S.K., 1955. Assays of catalase and peroxidase. Methods in enzymology 2, 764–775.
Chen C., Dickman M.B., 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. PNAS 102, 3459–3464.
Choudhary N.L., Sairam R.K., Tyagi A., 2005. Expression of delta1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J. Biochem. Biophys. 42, 6, 366–370.
El-Akkad S.S., 2004. Biochemical changes induced in Populus nigra leaves by galling aphids Pempighus populi. Inter. J. Agric. Biol. 6, 659–664.
Gibon Y., Sulpice R., Larher F., 2000. Proline accumulation in conola leaf discs subjected to osmotic stress in related to the loss of chlorophylls and to the decrease of mitochondrial activity. Physiol. Plant. 110, 469–476.
Gill S.S., Tuteja N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930.
Golan K., Rubinowska K., Górska -Drabik E., 2013. Physiological and biochemical responses on fern Nephrolepis biserrata (Sw.) Schott. to Coccus hesperidum L. infestation. Acta Biol. Cracov. Ser. Bot. 55, 1–6.
Griesbach R.J., 2002. Development of Phalaenopsis orchid for the mass-market. In: Trends in new crops and new uses, Janick J., Whipkey A. (eds). ASHS Press, Alexandria, VA, 458–465.
Gulsen O., Eickhoff T., Heng-Moss T., Shearman R., Baxendale F., Sarath G., Lee D., 2010. Characterization of peroxidase changes in resistant and susceptible warm-season turfgrass challenged by Blissus occiduus. Arthropod-Plant Inter. 4, 45–55.
He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Liu Z., Guan Z., He C., 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J. Plant Physiol. 168, 687–693.
Heath R.L., Packer L., 1968. Effect of light on lipid peroxidation in chloroplasts. Biochem. Biophys. Res. Comm. 19, 716–720.
Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H., 2001. A large family of class III plant peroxidases. Plant Cell Physiol. 42, 462–468.
Hu Z.H., Shen Y.B., Shen F.Y., Su X.H., 2009. Effects of feeding Clostera anachoreta on hydrogen peroxide accumulation and activities of peroxidase, catalase, and ascorbate peroxidase in Populus simonii × P. pyramidalis ‘Opera 8277’ leaves. Acta Physiol. Plant. 31, 995–1002.
Imbiscuso G., Trotta A., Maffei M., Bossi S., 2009. Herbivory induces a ROS burst and the release of volatile organic compounds in the fern Pteris vittata L. J. Plnt Inter. 4, 15–22.
Khattab H., Khattab I., 2005. Responses of eucalypt trees to insect herbivory (gall forming psyllid). Int. J. Agric. Biol. 7, 979–984
Kościelniak J., 1993. Wpływ następczy temperatur w termoperiodyzmie dobowym na produktywność fotosyntetyczną kukurydzy (Zea mays L.) / Successive effect of temperature daily thermoperiodism in the photosynthetic productivity of maize (Zea mays L.). PhD thesis 174, University of Agriculture, Kraków.
Łukasik I., Goławska S., Wójcicka A., 2012. Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Pol. J. Environ. Stud. 21, 6, 1937–1941.
Mai V.C., Bednarski W., Borowiak-Sobkowiak B., Wilkaniec B., Samardakiewicz S., Morkunas I., 2013. Oxidative stress in pea seedling leaves in response to Acyrtosiphon pisum infestation. Phytochemistry 93, 49–62.
Maffei M.E., Mithöfer A., Arimura G., Uctenhagen H., Bossi S., Bertea C.M., Cucuzz L.S., Novero M., Volpe V., Quadro S., Boland W., 2006. Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol. 140, 1022–1035.
Maffei M.E., Mithöfer A., Boland W., 2007. Before gene expression: early events in plant – insect interaction. Trends Plant Sci. 12, 310–316.
Małolepsza A., Urbanek H., Polit J., 1994. Some biochemical of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment. Acta Agrobot. 47, 73–81.
Mehdy M.C., 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 105, 467–472.
Mohase L., van der Westhuizen A.J., 2002. Salicylic acid is involved in resistant response in the Russia wheat aphid-wheat interaction. J. Plant Physiol. 159, 585–590.
Moloi M.J., van der Westhuizen A.J., 2006. The reactive oxygen species are involved in resistance response of wheat to the Russian wheat aphid. J. Plant Physiol. 163, 1118–1125.
Orozco-Cardenas M.L., Ryan C., 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96, 6553–6557.
Passardi F., Cosio C., Penel C., 2005. Peroxidase have more functions than a Swiss army knife. Plant Cell Rep. 24, 255–256.
Sempruch C., 2008. Znaczenie amin alifatycznych i aromatycznych w reakcjach obronnych roślin przeciwko patogenom. Post. Nauk Roln. 3, 17–33.
Szabados L., Savouré A., 2009. Proline: a multifunctional amino acid. Review. Trends Plant Sci. 15, 2, 89–97.
Vranová E., Inzé D., van Breugsegem F., 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53, 1227–1236.
Wiloch U., Mioduszewska H., Banaś A., 1999. The influence of alloxydim on the antioxidant enzymatic activity in the roots maize (Zea mays L.). Acta Physiol. Plant. Suppl. 21, 535–541.
Yang T., Poovaiah B.W., 2002. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. USA. 99, 4097–4102.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.